School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
10 results
Search Results
Item Hydrogen-impurity-induced unconventional magnetism in semiconducting molybdenum ditelluride(American Physical Society, 2023-04-28T00:00:00) Krieger, Jonas A.; Tay, Daniel; Rusinov, Igor P.; Barua, Sourabh; Biswas, Pabitra K.; Korosec, Lukas; Prokscha, Thomas; Schmitt, Thorsten; Schr�ter, Niels B. M.; Shang, Tian; Shiroka, Toni; Suter, Andreas; Balakrishnan, Geetha; Chulkov, Evgueni V.; Strocov, Vladimir N.; Salman, ZaherLayered transition-metal dichalcogenides are proposed as building blocks for van der Waals heterostructures due to their graphenelike two-dimensional structure. For this purpose, a magnetic semiconductor could represent an invaluable component for various spintronics and topotronics devices. Here, we combine different local magnetic probe spectroscopies with angle-resolved photoemission and density-functional theory calculations to show that 2H-MoTe2 is on the verge of becoming magnetic. Our results present clear evidence that the magnetism can be "switched on"by a hydrogenlike impurity. We also show that this magnetic state survives up to the free surface region, demonstrating the material's potential applicability as a magnetic component for thin-film heterostructures. � 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Item Unraveling the Role of Orbital Interaction in the Electrochemical HER of the Trimetallic AgAuCu Nanobowl Catalyst(American Chemical Society, 2023-03-24T00:00:00) Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Ahmed, Imtiaz; Barua, Sourabh; Mondal, Krishnakanta; Haldar, Krishna KantaUnraveling the origins of the electrocatalytic activity of composite nanomaterials is crucial but inherently challenging. Here, we present a comprehensive investigation of the influence of different orbitals� interaction in the AuAgCu nanobowl model electrocatalyst during the hydrogen evolution reaction (HER). According to our theoretical study, AgAuCu exhibits a lower energy barrier than AgAu and AgCu bimetallic systems for the HER, suggesting that the trimetallic AgAuCu system interacts optimally with H*, resulting in the most efficient HER catalyst. As we delve deeper into the HER activity of AgAuCu, it was observed that the presence of Cu allows Au to adsorb the H* intermediate through the hybridization of s orbitals of hydrogen and s, dx2-y2, and dz2 orbitals of Au. Such orbital interaction was not present in the cases of AgAu and AgCu bimetallic systems, and as a result, these bimetallic systems exhibit lower HER activities. � 2023 American Chemical Society.Item Janus ?-Te2X (X = S, Se) monolayers for efficient excitonic solar cells and photocatalytic water splitting(Royal Society of Chemistry, 2023-01-04T00:00:00) Singh, Jaspreet; Kumar, AshokHighly efficient, environmentally friendly and renewable sources of energy are of great need today to combat increasing energy demands and environmental pollution. In this work, we have investigated the novel 2D allotropes, i.e., ?-Te2X (X = S, Se), using first-principles calculations and study their potential applications in light harvesting devices. Both the monolayers possess high stability and semiconducting nature with an indirect band gap. The high carrier mobilities and excellent optical absorption of these monolayers make them potential candidates for solar conversion applications. We have proposed the type-II heterojunction solar cells and calculated their power conversion efficiencies (PCEs). The small conduction band offset and appropriate band gap of donor material in the case of ?-Te2S(S-Side)/?-Te2S(Te-Side) heterojunction results in a PCE of ?21%. In addition, the band alignments of these monolayers properly engulf the redox potentials of water. The overpotentials required to trigger hydrogen reduction (HER) and water oxidation (OER) half reactions reveal that HER and OER preferred acidic and neutral media, respectively. The calculated solar-to-hydrogen (STH) efficiencies of ?-Te2S (?-Te2Se) monolayers turn out to be ?13% (?12%), respectively, which implies their practical applications in water splitting. Thus, our work provides strong evidence regarding the potential applications of these materials in the field of light harvesting devices. � 2023 The Royal Society of Chemistry.Item Two-dimensional ?-PdX2 (X = S, Te) monolayers for efficient solar energy conversion applications(Royal Society of Chemistry, 2022-02-09T00:00:00) Jakhar, Mukesh; Kumar, AshokThe search for highly effective and environmentally safe photocatalysts for water splitting and photovoltaic solar cells is essential for renewable solar energy conversion and storage. Based on first-principle calculations, we show that novel 2D ?-PdX2 (X = S, Te) monolayer possesses excellent stability and great potential in solar energy conversion applications. Comprehensive studies show that the ?-PdS2 monolayer exhibits semiconductor characteristics with an indirect gap, suitable band alignment, efficient carrier separation, and high solar to hydrogen (STH) efficiency, supporting its good photoelectronic performance. The surface catalytic and adsorption/intercalation energy calculation reveals that the photogenerated electrons have adequate driving forces to render hydrogen reduction half-reactions to proceed spontaneously and the ability to cover and incorporate water molecules on the ?-PdS2 monolayer. Besides, the ?-PdTe2 monolayer is a promising donor material for excitonic solar cells with high photovoltaic performance. More importantly, due to suitable donor band gap and small conduction band offset in the proposed type-II heterostructure, the power conversion efficiencies (PCE) were calculated up to ?23% (?-PdTe2/WTe2), ?21% (?-PdTe2/MoTe2) and ?18% (?-PdTe2/?-PdS2), making it a promising candidate for solar energy conversion applications. � 2022 The Royal Society of ChemistryItem Ab Initio Modeling of the ZnO-Cu(111) Interface(American Chemical Society, 2021-12-31T00:00:00) Mondal, Krishnakanta; Megha; Banerjee, Arup; Fortunelli, Alessandro; Walter, Michael; Moseler, MichaelThe morphology at the catalytically active interfacial site of ZnO/Cu in the commercial ZnO/Cu/Al2O3 catalyst for CO2 hydrogenation to methanol is still an open question. In the present study, we employ ab initio density functional theory based methods to gain insight into the structure of the ZnO-Cu interface by investigating the morphology of supported ZnO nano-ribbons at the interface with the Cu(111) surface in the presence of hydrogen and water molecules. We find that the stabilities of free-standing ZnO nano-ribbons get enhanced when they are supported on the Cu(111) surface. These supported nano-ribbons are further stabilized by the adsorption of hydrogen atoms on the top of O atoms of the nano-ribbons. Interestingly, the hydrogenated nano-ribbons are found to be equally stable and they appear to be an array of independent chains of ZnOH motifs, suggesting that the hydrogenated nano-ribbons are structurally fluxional. The edge of these fluxional nano-ribbons is stabilized via a triangular reconstruction with a basic composition of Zn6O7H7 in the presence of water molecules. Such a triangular structure gets further stabilized when it is attached to a bulk-like part of the ZnO/Cu(111) system. Furthermore, we find that the triangular reconstruction is energetically favorable even at the methanol synthesis conditions. Therefore, we propose that, under methanol synthesis conditions, the motif Zn6O7H7 represents a stable form at the interface between the bulk-like part of ZnO and the Cu(111) surface in the ZnO/Cu/Al2O3 based commercial catalyst. � 2021 American Chemical SocietyItem Bio-assisted Synthesis of Au/Rh Nanostructure Electrocatalysts for Hydrogen Evolution and Methanol Oxidation Reactions: Composition Matters!(American Chemical Society, 2023-08-11T00:00:00) Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Ahmed, Imtiaz; Biswas, Sayani; Mondal, Krishnakanta; Haldar, Krishna KantaIn the field of catalysis, bimetallic nanostructures have attracted much interest. Here, we discuss the effect of Au/Rh bimetallic composition-tuned nanostructure and electrocatalytic activity. A simple bio-assisted technique was used to fabricate multiple Au:Rh nanoplate ratios (25:75, 50:50, and 75:25). XRD and XPS studies show that both Au and Rh phases coexist in a bimetallic nanostructure, and electron microscopy confirms the formation of a triangle-shaped nanoplate. Au0.25Rh0.75 exhibited the maximum catalytic activity and good stability for hydrogen evolution reaction (HER) with an overpotential of 105 mV at a current density of 10 mA/cm2. On the other hand, Au0.50Rh0.50 exhibits a higher activity for methanol oxidation reaction (MOR) compared to the other compositions. Theoretical studies indicate that the electrocatalytic enhancement obtained for both HER and MOR relies on electronic modification effects of the surface, with the overall reaction energy profile being optimized due to Au/Rh d-band mixing. � 2023 American Chemical Society.Item Coupling Nonstoichiometric Zn0.76Co0.24S with NiCo2S4Composite Nanoflowers for Efficient Synergistic Electrocatalytic Oxygen and Hydrogen Evolution Reactions(American Chemical Society, 2022-12-15T00:00:00) Biswas, Rathindranath; Thakur, Pooja; Ahmed, Imtiaz; Rom, Tanmay; Ali, Mir Sahidul; Patil, Ranjit A.; Kumar, Bhupender; Som, Shubham; Chopra, Deepak; Paul, Avijit Kumar; Ma, Yuan-Ron; Haldar, Krishna KantaTransition-metal sulfide-based composite nanomaterials have garnered extensive interest not only for their unique morphological architectures but also for exploring as a noble-metal-free cost-effective, durable, and highly stable catalyst for electrochemical water splitting. In this work, we synthesized in situ nonstoichiometric Zn0.76Co0.24S with NiCo2S4binary composite flowers (Zn0.76Co0.24S/NiCo2S4) in one step by thermal decomposition of Zn2[PDTC]4and Ni[PDTC]2complexes by a solvothermal process in a nonaqueous medium from their molecular precursor, and their potential application in electrochemical oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) was investigated. Field-emission scanning electron microscopy and transmission electron microscopy analyses revealed the flower-shaped morphology of as-synthesized Zn0.76Co0.24S/NiCo2S4. Again, the structural and chemical compositions were confirmed through powder X-ray diffraction and X-ray photoelectron spectroscopy studies, respectively. The as-obtained 3D flower-type Zn0.76Co0.24S/NiCo2S4nanostructure was further subject to electrochemical OER and HER in alkaline and acidic media, respectively. Zn0.76Co0.24S/NiCo2S4showed low overpotential values of 248 mV (Tafel slope, 85 mV dec-1) and 141 mV (Tafel slope, 79 mV dec-1) for OER and HER activities, respectively, due to the synergistic effects of Zn0.76Co0.24S and NiCo2S4. Several long-term stability tests also affirmed that the Zn0.76Co0.24S/NiCo2S4composite nanostructure is a highly stable and efficient electrocatalyst toward OER and HER activities as compared to the recently reported superior bifunctional electrocatalysts as well as state-of-the-art materials. � 2023 American Chemical Society. All rights reserved.Item Dithiophosphonate Anchored Heterometallic (Ag(I)/Fe(II)) Molecular Catalysts for Electrochemical Hydrogen Evolution Reaction(American Chemical Society, 2022-08-12T00:00:00) Jangid, Dilip Kumar; Dastider, Saptarshi G.; Biswas, Rathindranath; Khirid, Samreet; Meena, Sangeeta; Kumar, Pankaj; Sahoo, Subash C.; Verma, Ved Prakash; Makde, Ravindra D.; Kumar, Ashwani; Jangir, Ravindra; Mondal, Krishnakanta; Haldar, Krishna Kanta; Dhayal, Rajendra S.The dichalcogenide ligated molecules in catalysis to produce molecular hydrogen through electroreduction of water are rarely explored. Here, a series of heterometallic [Ag4(S2PFc(OR)4] [where Fc = Fe(?5-C5H4)(?5-C5H5), R = Me, 1; Et, 2; nPr, 3; isoAmyl, 4] clusters were synthesized and characterized by IR, absorption spectroscopy, NMR (1H, 31P), and electrospray ionization mass spectrometry. The molecular structures of 1, 2, and 3 clusters were established by single-crystal X-ray crystallographic analysis. The structural elucidation shows that each triangular face of a tetrahedral silver(I) core is capped by a ferrocenyl dithiophosphonate ligand in a trimetallic triconnective (?3 ?2, ?1) pattern. A comparative electrocatalytic hydrogen evolution reaction of 1-5 (R = iPr, 5) was studied in order to demonstrate the potential of these clusters in water splitting activity. The experimental results reveal that catalytic performance decreases with increases in the length of the carbon chain and branching within the alkoxy (-OR) group of these clusters. Catalytic durability was found effective even after 8 h of a chronoamperometric stability test along with 1500 cycles of linear sweep voltammetry performance, and only 15 mV overpotential was increased at 5 mA/cm2 current density for cluster 1. A catalytic mechanism was proposed by applying density functional theory (DFT) on clusters 1 and 2 as a representative. Here, a ?1 coordinated S-site between Ag4 core and ligand was found a reaction center. The experimental results are also in good accordance with the DFT analysis. � 2022 American Chemical Society.Item Vanadate Encapsulated Polyoxoborate Framework with [V12B18] Clusters: An Efficient Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions(American Chemical Society, 2022-07-11T00:00:00) Rom, Tanmay; Biswas, Rathindranath; Haldar, Krishna Kanta; Saha, Uttam; Rayaprol, Sudhindra; Paul, Avijit KumarWidespread contemporary attention has grown over the years in the search for a new functional and robust inorganic framework system with the advent of exciting applications. Herein, a facile strategy has been demonstrated for developing noble-metal-free bifunctional electrocatalysts by successfully preparing a polyoxovanadoborate framework compound, i.e., [Na10(H2O)18][(VO)12(?3-OH)6(B3O7)6]�5H2O, i.e., NVBO-I. Anionic vanadoborate clusters are interconnected through a cationic sodium aquated chain to form a three-dimensional framework structure. The compound exhibits remarkable bifunctional activity for oxygen and hydrogen evolution reactions over many well-engineered and state-of-art electrocatalysts under a similar catalytic environment. � 2022 American Chemical Society.Item Charge Separated One-Dimensional Hybrid Cobalt/Nickel Phosphonate Frameworks: A Facile Approach to Design Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions(American Chemical Society, 2021-09-30T00:00:00) Rom, Tanmay; Biswas, Rathindranath; Haldar, Krishna Kanta; Sarkar, Sourav; Saha, Uttam; Paul, Avijit KumarTwo new organoamine templated one-dimensional transition metal phosphonate compounds are synthesized, and their bifunctional electrocatalytic activities are examined in highly alkaline and acidic media. Compared with state-of-the-art materials, the cobalt phosphonate system is a new fabrication of sustainable and highly efficient catalysts toward electrochemical water splitting systems. � 2021 American Chemical Society. All rights reserved.