School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Recent efforts for drug identification from phytochemicals against SARS-CoV-2: Exploration of the chemical space to identify druggable leads
    (Elsevier Ltd, 2021-04-03T00:00:00) Joshi, Gaurav; Sindhu, Jayant; Thakur, Shikha; Rana, Abhilash; Sharma, Geetika; Mayank; Poduri, Ramarao
    Nature, which remains a central drug discovery pool, is always looked upon to find a putative druggable lead. The natural products and phytochemical derived from plants are essential during a global health crisis. This class represents one of the most practical and promising approaches to decrease pandemic's intensity owing to their therapeutic potential. The present manuscript is therefore kept forth to give the researchers updated information on undergoing research in allied areas of natural product-based drug discovery, particularly for Covid-19 disease. The study briefly shreds evidence from in vitro and in silico researches done so far to find a lead molecule against Covid-19. Following this, we exhaustively explored the concept of chemical space and molecular similarity parameters for the drug discovery about the lead(s) generated from in silico-based studies. The comparison was drawn using FDA-approved anti-infective agents during 2015�2020 using key descriptors to evaluate druglike properties. The outcomes of results were further corroborated using Molecular Dynamics studies which suggested the outcomes in alignment with chemical space ranking. In a nutshell, current research work aims to provide a holistic strategic approach to drug design, keeping in view the identified phytochemicals against Covid-19. � 2021 Elsevier Ltd
  • Item
    Phytochemicals present in Indian ginseng possess potential to inhibit SARS-CoV-2 virulence: A molecular docking and MD simulation study
    (Academic Press, 2021-05-24T00:00:00) Kushwaha, Prem Prakash; Singh, Atul Kumar; Prajapati, Kumari Sunita; Shuaib, Mohd; Gupta, Sanjay; Kumar, Shashank
    Coronaviruses are deadly and contagious pathogens that affects people in different ways. Researchers have increased their efforts in the development of antiviral agents against coronavirus targeting Mpro protein (main protease) as an effective drug target. The present study explores the inhibitory potential of characteristic and non-characteristic Withania somnifera (Indian ginseng) phytochemicals (n ? 100) against SARS-Cov-2 Mpro protein. Molecular docking studies revealed that certain W. somnifera compounds exhibit superior binding potential (?6.16 to ?12.27 kcal/mol) compared to the standard inhibitors (?2.55 to ?6.16 kcal/mol) including nelfinavir and lopinavir. The non-characteristic compounds (quercetin-3-rutinoside-7-glucoside, rutin and isochlorogenic acid B) exhibited higher inhibitory potential in comparison to characteristic W. somnifera compounds withanolide and withanone. Molecular dynamics (MD) simulation studies of the complex for 100 ns confirm favorable and stable binding of the lead molecule. The MMPBSA calculation of the last 10 ns of the protein-ligand complex trajectory exhibited stable binding of quercetin-3-rutinoside-7-glucoside at the active site of SARS-Cov-2 Mpro. Taken together, the study demonstrates that the non-characteristic compounds present in W. somnifera possess enhanced potential to bind SARS-Cov-2 Mpro active site. We further recommend in vitro and in vivo experimentation to validate the anti-SARS-CoV-2 potential of these lead molecules. � 2021 Elsevier Ltd