School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
2 results
Search Results
Item A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors(Elsevier Ltd, 2020) Kaur S.; Bansal Y.; Kumar R.; Bansal G.Interleukin-6 (IL-6) is a pleiotropic pro-inflammatory cytokine. Its deregulation is associated with chronic inflammation, and multifactorial auto-immune disorders. It mediates its biological roles through a hexameric complex composed of IL-6 itself, its receptor IL-6R, and glycoprotein 130 (IL-6/IL-6R/gp130). This complex, in turn, activates different signaling mechanisms (classical and trans-signaling) to execute various biochemical functions. The trans-signaling mechanism activates various pathological routes, like JAK/STAT3, Ras/MAPK, PI3K–PKB/Akt, and regulation of CD4+ T cells and VEGF levels, which cause cancer, multiple sclerosis, rheumatoid arthritis, anemia, inflammatory bowel disease, Crohn's disease, and Alzheimer's disease. Involvement of IL-6 in pathophysiology of these complex diseases makes it an important target for the treatment of these diseases. Though some anti-IL-6 monoclonal antibodies are being used clinically, but their high cost, only parenteral administration, and possibility of immunogenicity have limited their use, and warranted the development of novel small non-peptide molecules as IL-6 inhibitors. In the present report, all molecules reported in literature as IL-6 inhibitors have been classified as IL-6 production, IL-6R, and IL-6 signaling inhibitors. Reports available till date are critically studied to identify important and salient structural features common in these molecules. These analyses would assist medicinal chemists to design novel and potent IL-6 production and signaling inhibitors, through knowledge- and/or computer-based approaches, for the treatment of complex multifactorial diseases.Item Synthesis, biological evaluation and molecular modeling studies of phenyl-/benzhydrylpiperazine derivatives as potential MAO inhibitors.(Elsevier, 2018) Kumar, Bhupinder; Sheetal; Mantha, Anil K.; Kumar, VinodMonoamine oxidase inhibitors (MAOIs) are potential drug candidates for the treatment of various neurological disorders like Parkinson's disease, Alzheimer's disease and depression. In the present study, two series of 4-substituted phenylpiperazine and 1-benzhydrylpiperazine (1-21) derivatives were synthesized and screened for their MAO-A and MAO-B inhibitory activity using Amplex Red assay. Most of the synthesized compounds were found selective for MAO-B isoform except compounds 3, 7, 8, 9 and 13 (MAO-A selective) while compound 11 was non-selective. In the current series, compound 12 showed most potent MAO-B inhibitor activity with IC50 value of 80 nM and compound 7 was found to be most potent MAO-A inhibitor with IC50 value of 120 nM and both the compounds were found reversible inhibitors. Compound 8 was found most selective MAO-A inhibitor while compound 20 was found most selective inhibitor for MAO-B isoform. In the cytotoxicity evaluation, all the compounds were found non-toxic to SH-SY5Y and IMR-32 cells at 25 µM concentration. In the ROS studies, compound 8 (MAO-A inhibitor) reduced the ROS level by 51.2% while compound 13 reduced the ROS level by 61.81%. In the molecular dynamic simulation studies for 30 ns, compound 12 was found quite stable in the active cavity of MAO-B. Thus, it can be concluded that phenyl- and 1-benzhydrylpiperazine derivatives are promising MAO inhibitors and can act as a lead to design potent, and selective MAO inhibitors for the treatment of various neurological disorders.