School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 10 of 11
  • Item
    Thermophysical Assessments on Self-Assembled Tellurium Nanostructures
    (American Chemical Society, 2023-09-01T00:00:00) Sudheer, Manjima; Rani, Pinki; Patole, Shashikant P.; Alegaonkar, Prashant S.
    Thermal properties of self-assembled nanostructures are of great importance to explain the structural phase transformation phenomenon. We report on the thermophysical assessments on tellurium nanostructures (TeN) that have been prepared using a facile wet-chemical technique by admixing precursor sodium telluride (Na2TeO3) and sodium molybdate (Na2MoO4) catalysts in hydrazine hydrate solution and heated at 120 �C, over 5-7 h. The extracted products (interval: 0.5 h) were subjected to a number of spectro-microscopic techniques including thermal measurements. Under identical growth conditions, the morphology of TeN was found to be transformed from Te nanotube (TT) to Te nanoflake (TF) at 6 h. Analysis revealed that Mo participated actively during 6 h of growth time, thereby making bonds with oxygen and the Te host lattice. At the vicinity of the phase transformation, Mo acquired an interstitial position in the hexagonal motif due to enhancement in catalytic efficiency that led to the formation of MoO2- moieties, which transiently reacted with host lattices resulting in surface charging of the tubes. This, in turn, created the coalescing effect with neighboring colloidal tubes through the van der Waals interaction. Thermal properties such as thermal conductivity, effusivity, diffusivity, and specific heat studied for TeN showed prominent surface effects. The increased surface area and enhanced amount of polycrystallinity resulted in unprecedently low thermal properties of TF due to severe phonon confinement. � 2023 American Chemical Society.
  • Item
    Insight into use of biopolymer in hybrid electrode materials for supercapacitor applications�A critical review
    (American Institute of Physics Inc., 2023-05-12T00:00:00) Tanwar, Shweta; Sharma, A.L.
    The shortage of natural resources due to the progression of the human population and environmental pollution has become crucial concern topics to resolve. One of the best ways to resolve this is to develop renewable energy-based storage systems. Supercapacitors are emerging as promising storage systems via providing rapid charging/discharging and high power delivery, but there is a need to explore low-cost, environment-friendly, non-toxic, abundant, and biodegradable electrode materials for supercapacitors. In this regard, biopolymers are observed to be popular for storage applications as they are of high porosity, cost-effective, easily available, low-weight, and environment friendly and have biodegradability properties. The biopolymer-based electrode has a desirable morphology and high surface area and exhibits admirable electrochemical properties. The focus of this report is to highlight (i) the inclusive details of supercapacitors and their types along with strategies to improve their electrochemical performance, (ii) biopolymers and their types used for supercapacitor applications, (iii) various synthesis routes that could be adopted for designing electrode materials based on biopolymers for supercapacitors, and (iv) challenges and future scope of biopolymers as the electrode material in supercapacitor applications. The detailed study here in this report is found to be a topic of interest for the scientific community to fabricate and prepare low-cost, eco-friendly, high electrochemical performance exhibiting electrode materials for supercapacitor applications. � 2023 Author(s).
  • Item
    Enhanced photocatalytic activity of BiOBr/ZnWO4 heterojunction: A combined experimental and DFT-based theoretical approach
    (Elsevier B.V., 2023-03-28T00:00:00) Andrade, Alana O.C.; Lacerda, Lu�s Henrique da Silveira; Lage J�nior, M.M.; Sharma, Surender K.; Maia da Costa, M.E.H.; Alves, Odivaldo C.; Santos, Evelyn C.S.; dos Santos, C.C.; de Menezes, A.S.; San-Miguel, Miguel Angel; Filho, Francisco Moura; Longo, Elson; Almeida, Marcio A.P.
    We report a successful fabrication of BiOBr/ZnWO4 heterojunction with enhanced photocatalytic performance for degrading Rhodamine B dye validated by joint experimental and theoretical approaches. The structural and microstructural analysis indicate that the heterostructures consist of a mixed tetragonal/monoclinic phase with enhanced surface area, which is crucial for photocatalysis. The results indicate increased photocatalytic activity for heterojunctions since BiOBr/ZnWO4 heterostructure showed a better degradation rate for Rhodamine B dye as compared to BiOBr due to higher surface area, pore size, and better photogenerated electron-hole pair separation efficiency. Additional analyses using isopropanol, benzoquinone, and sodium azide scavengers analysis were performed, showing that superoxide radicals (O2?) as the main responsible for the photocatalytic degradation of investigated materials. The theoretical analysis offers a complete overview of the composition and electronic structure of the interface. � 2023 Elsevier B.V.
  • Item
    Synthesis, phase confirmation and electrical properties of (1 ? x)KNNS?xBNZSH lead-free ceramics
    (Springer, 2022-02-02T00:00:00) Kumar, Amit; Kumari, Sapna; Kumar, V.; Kumar, Prashant; Thakur, Vikas N.; Kumar, Ashok; Goyal, P.K.; Arya, Anil; Sharma, A.L.
    In the present work, lead-free piezoelectric ceramics (Rx)(K0.5Na0.5)(Nb0.96Sb0.04O3)?x(Bi0.5Na0.5)(Zr0.8Sn0.1Hf0.1)O3 [abb. as (Rx)KNNS?xBNZSH, 0 ? x ? 0.04] were prepared via solid-state sintering technique. The thermal behavior of mixed powders has been investigated for x = 0, 0.02, and 0.04 using TGA-DSC analysis to estimate the calcination temperature. The structural, morphological, dielectric, ferroelectric and piezoelectric properties are analyzed through the appropriate characterization techniques. The X-ray diffraction (XRD) patterns demonstrate a pure perovskite phase structure for all the sintered samples. Further, the coexistence of rhombohedral to orthorhombic (R-O) phase is observed in ceramic sample with x = 0.02. The morphology of all the sintered samples exhibits an inhomogeneous, dense microstructure with the rectangular grain, while for x = 0.02, a relatively homogeneous distribution of grains is observed. BNZSH doping decreases the average grain size from 2.22 to 0.33�?m for x = 0 to x = 0.04, respectively. Owing to the presence of multiple-phase coexistence as well as the improved microstructure and enhanced dielectric properties (dielectric constant ?r = 1080, ?max = 5301; Curie temperature - TC ~ 317��C; dielectric loss - tan? ~ 6%) the ceramics with x = 0.02 has been found to have a large piezoelectric coefficient (d33) of ~180 pC/N, remnant polarization (Pr) ~ 16.7 �C/cm2 and coercive field (Ec) ~ 10.7�kV/cm. We believe it will expand the range of applications for KNN-based ceramics. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Does Water Play a Crucial Role in the Growth of ZnO Nanoclusters in ZnO/Cu Catalyst?
    (American Chemical Society, 2023-05-04T00:00:00) Dastider, Saptarshi Ghosh; Panigrahi, Abhishek Ramachandra; Banerjee, Arup; Haldar, Krishna Kanta; Fortunelli, Alessandro; Mondal, Krishnakanta
    The catalytically active configuration of ZnO/Cu in the commercial ZnO/Cu/Al2O3 catalyst for methanol synthesis from CO2 is still not clear. In this study, we employ density functional theory based methods to shed light on the structure and stoichiometry of ZnO clusters both free in the gas phase and also deposited on the Cu(111) surface under methanol synthesis conditions. Specifically, we investigate the structural evolution of ZnO clusters in the presence of hydrogen and water. We find that the stability of ZnO clusters increases with the concentration of water until the ratio of Zn and OH in the clusters reaches 1:2, with a morphological transition from planar to 3D configurations for clusters containing more than 4 Zn atoms. These clusters exhibit weak interaction with CO2, and water is predicted to block the active center. The Cu(111) surface plays an important role in enhancing the adsorption of CO2 on the ZnO/Cu(111) systems. We infer that ZnO nanostructures covered with OH species may be the morphology of the ZnO during the methanol synthesis from the hydrogenation of CO2 on the industrial catalyst. � 2023 American Chemical Society.
  • Item
    Interfacial Engineering of CuCo2S4/g-C3N4Hybrid Nanorods for Efficient Oxygen Evolution Reaction
    (American Chemical Society, 2021-07-29T00:00:00) Biswas, Rathindranath; Thakur, Pooja; Kaur, Gagandeep; Som, Shubham; Saha, Monochura; Jhajhria, Vandna; Singh, Harjinder; Ahmed, Imtiaz; Banerjee, Biplab; Chopra, Deepak; Sen, Tapasi; Haldar, Krishna Kanta
    Altering the morphology of electrochemically active nanostructured materials could fundamentally influence their subsequent catalytic as well as oxygen evolution reaction (OER) performance. Enhanced OER activity for mixed-metal spinel-type sulfide (CuCo2S4) nanorods is generally done by blending the material that has high conductive supports together with those having a high surface volume ratio, for example, graphitic carbon nitrides (g-C3N4). Here, we report a noble-metal-free CuCo2S4 nanorod-based electrocatalyst appropriate for basic OER and neutral media, through a simple one-step thermal decomposition approach from its molecular precursors pyrrolidine dithiocarbamate-copper(II), Cu[PDTC]2, and pyrrolidine dithiocarbamate-cobalt(II), Co[PDTC]2 complexes. Transmission electron microscopy (TEM) images as well as X-ray diffraction (XRD) patterns suggest that as-synthesized CuCo2S4 nanorods are highly crystalline in nature and are connected on the g-C3N4 support. Attenuated total reflectance-Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies affirm the successful formation of bonds that bridge (Co-N/S-C) at the interface of CuCo2S4 nanorods and g-C3N4. The kinetics of the reaction are expedited, as these bridging bonds function as an electron transport chain, empowering OER electrocatalytically under a low overpotential (242 mV) of a current density at 10 mA cm-2 under basic conditions, resulting in very high durability. Moreover, CuCo2S4/g-C3N4 composite nanorods exhibit a high catalytic activity of OER under a neutral medium at an overpotential of 406 mV and a current density of 10 mA cm-2. � 2021 American Chemical Society.
  • Item
    Green Approach for the Fabrication of Au/ZnO Nanoflowers: A Catalytic Aspect
    (American Chemical Society, 2021-03-19T00:00:00) Biswas, Rathindranath; Banerjee, Biplab; Saha, Monochura; Ahmed, Imtiaz; Mete, Shouvik; Patil, Ranjit A.; Ma, Yuan-Ron; Haldar, Krishna Kanta
    An easy, environmentally benign, and biomimetic approach employing Azadirachta indica (neem) leaf extract as a reducing as well as capping agent was used for the fabrication of gold (Au)/zinc oxide (ZnO) hybrid nanoflowers in one pot without utilizing any hazardous chemicals. The different phytoconstituents, for example, nimbolide, azadirachtin, ascorbate, etc., present in A. indica (neem) leaf extract synergistically reduce gold(III) ions to gold(0), which later on acts as an active surface for the growth of zinc oxide (ZnO) via thermal decomposition of sodium zincate [Na2Zn(OH)4]. The development of Au/ZnO hybrid nanoflowers was observed by estimating the absorption maxima at various time intervals in the wake of adding a Au precursor to the aqueous extract. X-ray diffraction (XRD) studies and X-ray photoelectron spectroscopy (XPS) investigation unambiguously confirm the formation of highly crystalline Au/ZnO composed of Au(0) and ZnO. The as-synthesized Au/ZnO hybrid nanoflowers were analyzed utilizing different spectroscopic and microscopic techniques. The transmission electron microscopy (TEM) images clearly show that the synthesized hybrid Au/ZnO nanoflowers are monodisperse and uniform. The fabricated Au/ZnO nanoflowers were used as a catalyst for the efficient reduction of various aromatic nitro compounds to corresponding amino compounds with excellent yield (76-94%) in the presence of reducing agent sodium borohydride. The superior catalytic properties were credited to the extraordinary nanoflower morphology and the synergistic impact of the typified Au nanoparticles. � 2021 American Chemical Society.
  • Item
    Composition, pasting, functional, and microstructural properties of flours from different split dehulled pulses (dhals)
    (Blackwell Publishing Ltd, 2021-03-28T00:00:00) Shevkani, Khetan; Kaur, Manmeet; Singh, Narpinder
    The present study compared flours from six different split dehulled pulses (dhals) with full-fat and defatted soybean flours for color, composition (proximate and mineral), protein molecular weight, microstructure, pasting, and functional properties. In comparison to soybean flours, dhal flours showed higher Fe content, paste viscosities, and bulk density; comparative color properties (L* and b*), aw, Zn content, foaming capacity, and foam stability; but lower emulsifying activity index (EAI), emulsion stability index (ESI), protein content, and ash content. Among different dhal flours, Cicer arietinum showed the highest fat absorption capacity (FAC), EAI, and ESI, while Phaseolus mungo and Pisum sativum flours showed the highest water absorption capacity (WAC) and foaming properties, respectively. Dhal flours also differed for protein molecular weight and starch morphology. Proteins in Vigna unguiculata, P. mungo, and P. aureus flours were high in vicilins of ?130�138�kDa, whereas Pisum sativum, Lens culinaris, and C. arietinum flours contained both vicilins (?135�142kDa) and legumins (?256�332�kDa) as major storage proteins. Principal component analysis revealed negative relation of paste viscosities with protein solubility, lipids, and mineral content while positive with bulk density. Emulsifying properties (EAI and ESI) related positively with FAC, and amount of proteins, lipids, Mn, Cu, K, and Mg, while foaming capacity related positively with WAC and Na content and negatively with protein solubility and concentration of Zn and Fe. Practical applications: Soybean, as flour or meal, is used in food formulation to improve nutritional and sensory properties, but it is listed as a major allergen in foods. The present study provides information on chemical composition and functionality of dhal flours in comparison to defatted and full-fat soy flours, which is useful for partial or complete replacement of soybean with pulse flours. The study also discusses flour characteristics that contribute to functional properties. The results of the present work are useful in identifying pulse flours that can mimic soybean flours/meals for functional properties. � 2021 Wiley Periodicals LLC.
  • Item
    Composition, pasting, functional, and microstructural properties of flours from different split dehulled pulses (dhals)
    (Blackwell Publishing Ltd, 2021-03-28T00:00:00) Shevkani, Khetan; Kaur, Manmeet; Singh, Narpinder
    The present study compared flours from six different split dehulled pulses (dhals) with full-fat and defatted soybean flours for color, composition (proximate and mineral), protein molecular weight, microstructure, pasting, and functional properties. In comparison to soybean flours, dhal flours showed higher Fe content, paste viscosities, and bulk density; comparative color properties (L* and b*), aw, Zn content, foaming capacity, and foam stability; but lower emulsifying activity index (EAI), emulsion stability index (ESI), protein content, and ash content. Among different dhal flours, Cicer arietinum showed the highest fat absorption capacity (FAC), EAI, and ESI, while Phaseolus mungo and Pisum sativum flours showed the highest water absorption capacity (WAC) and foaming properties, respectively. Dhal flours also differed for protein molecular weight and starch morphology. Proteins in Vigna unguiculata, P. mungo, and P. aureus flours were high in vicilins of ?130�138�kDa, whereas Pisum sativum, Lens culinaris, and C. arietinum flours contained both vicilins (?135�142kDa) and legumins (?256�332�kDa) as major storage proteins. Principal component analysis revealed negative relation of paste viscosities with protein solubility, lipids, and mineral content while positive with bulk density. Emulsifying properties (EAI and ESI) related positively with FAC, and amount of proteins, lipids, Mn, Cu, K, and Mg, while foaming capacity related positively with WAC and Na content and negatively with protein solubility and concentration of Zn and Fe. Practical applications: Soybean, as flour or meal, is used in food formulation to improve nutritional and sensory properties, but it is listed as a major allergen in foods. The present study provides information on chemical composition and functionality of dhal flours in comparison to defatted and full-fat soy flours, which is useful for partial or complete replacement of soybean with pulse flours. The study also discusses flour characteristics that contribute to functional properties. The results of the present work are useful in identifying pulse flours that can mimic soybean flours/meals for functional properties. � 2021 Wiley Periodicals LLC.
  • Thumbnail Image
    Item
    Wheat starch production, structure, functionality and applications :a review
    (Blackwell Publishing Ltd, 2017) Shevkani, Khetan; Singh, 2 Narpinder; Bajaj, Ritika; Kaur, Amritpal
    Starch is the main component of wheat having a number of food and industrial applications. Thousands of cultivars/varieties of different wheat types and species differing in starch functionality (thermal, retrogradation, pasting and nutritional properties) are grown throughout the world. These properties are related to starch composition, morphology and structure, which vary with genetics, agronomic and environmental conditions. Starches from soft wheat contain high amounts of surface lipids and proteins and exhibit lower paste viscosity, whereas that from hard cultivars contain high proportion of small granules and amylose content but lower gelatinization temperature and enthalpy. Waxy starches exhibit higher-percentage crystallinity, gelatinization temperatures, swelling power, paste viscosities and digestibility, but lower-setback viscosity, rate of retrogradation and levels of starch lipids and proteins than normal and high-amylose starches. Starches with high levels of lipids are less susceptible towards gelatinization, swelling and retrogradation and are good source of resistant starch, while that with high proportion of long amylopectin chains are more crystalline, gelatinize at high temperatures, increase paste viscosity, retrograde to a greater extent and decrease starch digestibility (high resistant and slowly digestible starch and low rapidly digestible starch). ? 2016 Institute of Food Science and Technology