School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
3 results
Search Results
Now showing 1 - 3 of 3
- Item Rethinking underutilized cereal crops: pan-omics integration and green system biology(Springer Science and Business Media Deutschland GmbH, 2023-09-30T00:00:00) Rahim, Mohammed Saba; Sharma, Vinita; Pragati Yadav; Parveen, Afsana; Kumar, Adarsh; Roy, Joy; Kumar, VinayMain conclusion: Due to harsh lifestyle changes, in the present era, nutritional security is needed along with food security so it is necessary to include underutilized cereal crops (UCCs) in our daily diet to counteract the rising danger of human metabolic illness. We can attain both the goal of zero hunger and nutritional security by developing improved UCCs using advanced pan-omics (genomics, transcriptomics, proteomics, metabolomics, nutrigenomics, phenomics and ionomics) practices. Abstract: Plant sciences research progressed profoundly since the last few decades with the introduction of advanced technologies and approaches, addressing issues of food demand of the growing population, nutritional security challenges and climate change. However, throughout the expansion and popularization of commonly consumed major cereal crops such as wheat and rice, other cereal crops such as millet, rye, sorghum, and others were impeded, despite their potential medicinal and nutraceutical qualities. Undoubtedly neglected underutilized cereal crops (UCCs) also have the capability to withstand diverse climate change. To relieve the burden of major crops, it is necessary to introduce the new crops in our diet in the way of UCCs. Introgression of agronomically and nutritionally important traits by pan-omics approaches in UCCs could be a defining moment for the population�s well-being on the globe. This review discusses the importance of underutilized cereal crops, as well as the application of contemporary omics techniques and advanced bioinformatics tools that could open up new avenues for future study and be valuable assets in the development and usage of UCCs in the perspective of green system biology. The increased and improved use of UCCs is dependent on number of factors that necessitate a concerted research effort in agricultural sciences. The emergence of functional genomics with molecular genetics might gear toward the reawakening of interest in underutilized cereals crops. The need of this era is to focus on potential UCCs in advanced agriculture and breeding programmes. Hence, targeting the UCCs, might provide a bright future for better health and scientific rationale for its use. � 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
- Item Rethinking underutilized cereal crops: pan-omics integration and green system biology(Springer Science and Business Media Deutschland GmbH, 2023-09-30T00:00:00) Rahim, Mohammed Saba; Sharma, Vinita; Pragati Yadav; Parveen, Afsana; Kumar, Adarsh; Roy, Joy; Kumar, VinayMain conclusion: Due to harsh lifestyle changes, in the present era, nutritional security is needed along with food security so it is necessary to include underutilized cereal crops (UCCs) in our daily diet to counteract the rising danger of human metabolic illness. We can attain both the goal of zero hunger and nutritional security by developing improved UCCs using advanced pan-omics (genomics, transcriptomics, proteomics, metabolomics, nutrigenomics, phenomics and ionomics) practices. Abstract: Plant sciences research progressed profoundly since the last few decades with the introduction of advanced technologies and approaches, addressing issues of food demand of the growing population, nutritional security challenges and climate change. However, throughout the expansion and popularization of commonly consumed major cereal crops such as wheat and rice, other cereal crops such as millet, rye, sorghum, and others were impeded, despite their potential medicinal and nutraceutical qualities. Undoubtedly neglected underutilized cereal crops (UCCs) also have the capability to withstand diverse climate change. To relieve the burden of major crops, it is necessary to introduce the new crops in our diet in the way of UCCs. Introgression of agronomically and nutritionally important traits by pan-omics approaches in UCCs could be a defining moment for the population�s well-being on the globe. This review discusses the importance of underutilized cereal crops, as well as the application of contemporary omics techniques and advanced bioinformatics tools that could open up new avenues for future study and be valuable assets in the development and usage of UCCs in the perspective of green system biology. The increased and improved use of UCCs is dependent on number of factors that necessitate a concerted research effort in agricultural sciences. The emergence of functional genomics with molecular genetics might gear toward the reawakening of interest in underutilized cereals crops. The need of this era is to focus on potential UCCs in advanced agriculture and breeding programmes. Hence, targeting the UCCs, might provide a bright future for better health and scientific rationale for its use. � 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
- Item Plant growth promoting bacteria in agriculture: Two sides of a coin(Elsevier, 2019) Ramakrishna, Wusirika; Yadav, Radheshyam; Li, KefengPlant growth promoting bacteria (PGPB) provide multiple benefits in agriculture by enhancing crop productivity and nutrient content and suppressing the growth of pathogens. Development of beneficial plant-microbe interactions based on genomics, transcriptomics, proteomics and metabolomic data of both PGPB and host will lead to optimized microbial inoculants for enhancing crop yield and nutrient content. PGPB are promoted as a green technology which will reduce the use of chemical fertilizers thereby improving soil health. Although a significant increase in the use of PGPB in agriculture was observed in the last two decades, there is a dearth of long-term studies addressing the effects of PGPB on existing microbial community structure. It is likely that most or all PGPB are resistant to common antibiotics used to treat human diseases. Antibiotic resistance of PGPB may be due to the presence of antibiotic resistance genes and intrinsic resistance due to the presence of efflux pumps. The biological significance of resistance to antibiotics and metals and their relation to plant growth promoting activity, if any, is not known. The consequences of harboring antibiotic resistance may be negative if the trait is transferred to other soil or environmental bacteria. Strategies to develop PGPB strains with useful traits of plant growth promotion but without resistance to common antibiotics used by humans, would enhance agricultural productivity without the negative effects on the environment. Alternately, harboring antibiotic resistance may be positive if it is due to intrinsic resistance involving proteins which also have other functions. Antibiotic resistance of PGPB may be an essential trait if it is related to their plant growth promoting activity. Overall, there is a need to conduct large-scale screening of PGPB for antibiotic resistance and long-term studies to see the effect of the introduction of biofertilizers on native soil microbial community.
