School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Type 2 Diabetes (T2DM) and Parkinson�s Disease (PD): a Mechanistic Approach
    (Springer, 2023-04-28T00:00:00) Sabari, S. Sri; Balasubramani, Kiruthika; Iyer, Mahalaxmi; Sureshbabu, Harysh Winster; Venkatesan, Dhivya; Gopalakrishnan, Abilash Valsala; Narayanaswamy, Arul; Senthil Kumar, Nachimuthu; Vellingiri, Balachandar
    Growing evidence suggest that there is a connection between Parkinson�s disease (PD) and insulin dysregulation in the brain, whilst the connection between PD and type 2 diabetes mellitus (T2DM) is still up for debate. Insulin is widely recognised to play a crucial role in neuronal survival and brain function; any changes in insulin metabolism and signalling in the central nervous system (CNS) can lead to the development of various brain disorders. There is accumulating evidence linking T2DM to PD and other neurodegenerative diseases. In fact, they have a lot in common patho-physiologically, including insulin dysregulation, oxidative stress resulting in mitochondrial dysfunction, microglial activation, and inflammation. As a result, initial research should focus on the role of insulin and its molecular mechanism in order to develop therapeutic outcomes. In this current review, we will look into the link between T2DM and PD, the function of insulin in the brain, and studies related to impact of insulin in causing T2DM and PD. Further, we have also highlighted the role of various insulin signalling pathway in both T2DM and PD. We have also suggested that T2DM-targeting pharmacological strategies as potential therapeutic approach for individuals with cognitive impairment, and we have demonstrated the effectiveness of T2DM-prescribed drugs through current PD treatment trials. In conclusion, this investigation would fill a research gap in T2DM-associated Parkinson�s disease (PD) with a potential therapy option. Graphical Abstract: [Figure not available: see fulltext.]. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Implications of cancer stem cells in diabetes and pancreatic cancer
    (Elsevier Inc., 2022-11-19T00:00:00) Mukherjee, Anirban Goutam; Wanjari, Uddesh Ramesh; Gopalakrishnan, Abilash Valsala; Bradu, Pragya; Sukumar, Aarthi; Patil, Megha; Renu, Kaviyarasi; Dey, Abhijit; Vellingiri, Balachandar; George, Alex; Ganesan, Raja
    This review provides a detailed study of pancreatic cancer (PC) and the implication of different types of cancers concerning diabetes. The combination of anti-diabetic drugs with other anti-cancer drugs and phytochemicals can help prevent and treat this disease. PC cancer stem cells (CSCs) and how they migrate and develop into malignant tumors are discussed. A detailed explanation of the different mechanisms of diabetes development, which can enhance the pancreatic CSCs' proliferation by increasing the IGF factor levels, epigenetic modifications, DNA damage, and the influence of lifestyle factors like obesity, and inflammation, has been discussed. It also explains how cancer due to diabetes is associated with high mortality rates. One of the well-known diabetic drugs, metformin, can be combined with other anti-cancer drugs and prevent the development of PC and has been taken as one of the prime focus in this review. Overall, this paper provides insight into the relationship between diabetes and PC and the methods that can be employed to diagnose this disease at an earlier stage successfully. � 2022 Elsevier Inc.
  • Thumbnail Image
    Item
    Geminin a multi task protein involved in cancer pathophysiology and developmental process: A review
    (Elsevier B.V., 2016) Kushwaha, Prem Prakash; Rapalli, Krishna Chaitanya; Kumar, Shashank
    DNA replicates in a timely manner with each cell division. Multiple proteins and factors are involved in the initiation of DNA replication including a dynamic interaction between Cdc10-dependent transcript (Cdt1) and Geminin (GMNN). A conformational change between GMNN-Cdt1 heterotrimer and heterohexamer complex is responsible for licensing or inhibition of the DNA replication. This molecular switch ensures a faithful DNA replication during each S phase of cell cycle. GMNN inhibits Cdt1-mediated minichromosome maintenance helicases (MCM) loading onto the chromatin-bound origin recognition complex (ORC) which results in the inhibition of pre-replication complex assembly. GMNN modulates DNA replication by direct binding to Cdt1, and thereby alters its stability and activity. GMNN is involved in various stages of development such as pre-implantation, germ layer formation, cell commitment and specification, maintenance of genome integrity at mid blastula transition, epithelial to mesenchymal transition during gastrulation, neural development, organogenesis and axis patterning. GMNN interacts with different proteins resulting in enhanced hematopoietic stem cell activity thereby activating the development-associated genes' transcription. GMNN expression is also associated with cancer pathophysiology and development. In this review we discussed the structure and function of GMNN in detail. Inhibitors of GMNN and their role in DNA replication, repair, cell cycle and apoptosis are reviewed. Further, we also discussed the role of GMNN in virus infected host cells. ? 2016 Elsevier B.V. and Soci?t? Fran?aise de Biochimie et Biologie Mol?culaire (SFBBM)