School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Molecular docking and in vitro study of Syzygium cumini-derived natural compounds on receptor tyrosine kinases pathway components
    (Inderscience Enterprises Ltd., 2019) Singh, P; Bast, Felix; Bhushan, S; Mehra, R; Kamboj, P.
    Syzygium cumini (S. cumini) is used for a variety of biological activities such as anti-inflammatory, anti-diabetic and anti-oxidant; currently, it has been reported for DNA protecting activity against radiation damage. Receptor tyrosine kinases (RTKs) are identified as critical regulators of various cellular processes including cell proliferation, metabolism and apoptosis. These receptors have recently gained attention as an attractive target for cancer treatment. The present research was aimed to screen S. cumini-derived natural compounds against RTKs pathway components using molecular docking. Furthermore, in vitro anti-proliferative 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and anti-oxidative (nitro blue tetrazolium and H 2 CDFD) activities of leaf extract of S. cumini are also reported. Selected natural compounds were docked with X-ray crystal structure of RTKs signalling proteins using grid-based ligand docking with energetics Maestro 9.6. In the present investigation, our result highlighted that myricetin, kaempferol, delphinidin chloride, ellagic acid, rutin, petunidin, gossypol and mirtillin generated a good dock score with all selected proteins. Protein-ligand interactions accentuated that several bonds such as lipophilic, hydrogen bonding, π-π stacking and cation-π interactions represent a ruling contribution at the active site. Moreover, reduction in cell viability with leaf extract of S. cumini treatment at concentrations of 5-80 µg/ml after 48 h in MCF-7 cells was observed. Leaf extract of S. cumini significantly reduced the Reactive oxygen species (ROS) generation in MCF-7 cells after 48 h. These results indicate the anti-cancer potential of S. cumini. Thus, isolation and purification of anti-cancerous compounds are suggested to explore more possibilities in the field. © 2019 Inderscience Enterprises Ltd.
  • Thumbnail Image
    Item
    Natural Compounds Are Smart Players in Context to Anticancer Potential of Receptor Tyrosine Kinases: An In Silico and In Vitro Advancement
    (Springer, 2017) Singh, Pushpendra; Kumar, Shashank; Bast, Felix
    Cancer is the ruling cause of mortality worldwide. Chemotherapeutic toxicity and drug resistance have provided impulsion for the formulation of new anticancer agents. Receptor tyrosine kinases (RTKs) are the most activated cell surface receptors for copious polypeptide growth factors, cytokines, and hormones that play a considerable role in cancer initiation, promotion, and progression. Natural products are a prime source of new anticancer drugs and their leads. The objective of computer-aided drug design (CADD) is to enhance the set of compounds with prudent active drug-like properties and eliminate inactive, toxic, poor absorption, distribution, metabolism, and excretion toxicity (ADME/T) compounds. In the present chapter, in silico advancement of anticancer natural compounds and molecular mechanisms of action of flavonoids, viz., genistein, myricetin, quercetin, luteolin, morin, kaempferol, catechin, and epigallocatechin gallate (EGCG), on RTK and PI3K signaling pathway attributing to their potential anticancer activity have been discussed.