School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Fabrication of Monarda citriodora essential oil nanoemulsions: characterization and antifungal activity against Penicillium digitatum of kinnow
    (Springer, 2023-02-13T00:00:00) Kaur, Kiranjot; Tandon, Ritu; Kalia, Anu; Babu, J. Nagendra
    Postharvest fungal pathogenic invasions are the major root cause of reduced shelf life of kinnow fruit, thereby contributing to the postharvest losses. Development of eco-friendly alternates are the need of the hour owing to health safety concerns for replacing the ongoing synthetic fungicide use. Essential oils with promising antimicrobial activities offer a promising solution but their hydrophobicity poses a big hindrance for exploiting the same. Present work was planned to explore their antimicrobial potential by developing their hydrophilic formulation with the use of nanotechnology. An in vitro study was conducted to assess the efficacy Monarda citriodora essential oil (MCEO) and its emulsions against major postharvest fungal pathogen of Kinnow; Penicillium digitatum. Both micro and nano formulations were prepared for different ratios of MCEO (0.5 to 3%) with different surfactant combinations and oil-surfactant-ratios (OSR) of 1:1 to 1:3. The influence of several process factors such as surfactant and oil phase concentrations, as well as sonication time intervals on emulsion stability was investigated by assessing attributes such as droplet diameter, Polydispersity index (PDI), zeta (?) potential and rheology. An emulsion formulated with 1% oil and 1:1 OSR treated with ultrasonic waves for 15�min was optimized with droplet diameter of 52.2�nm, 0.245 PDI and ?�21�mV of ? potential with consistent stability till 1�month. Further, in vitro antifungal activity of the optimized MCEO nanoemulsion exhibited the best efficacy with 100% inhibition at 200�mg L?1. Graphical Abstract: [Figure not available: see fulltext.] � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Structural and functional properties of amaranth starches from residue obtained during protein extraction
    (Springer, 2021-07-26T00:00:00) Shevkani, Khetan; Singh, Narpinder; Isono, Naoto; Noda, Takahiro
    The present study evaluated Amaranthus caudatus (AC) and A. hypochondriacus (AH) starches obtained as coproduct during protein extraction for composition, granule size, amylopectin fine structure, thermal, retrogradation, pasting and dynamic rheological-properties to elucidate structure-function relationships. The starches exhibited unimodal particle size distribution with mean granule size of 1.26�3.12�?m. AC starch with larger granules (mean granule size 3.12�?m) than AH starches (1.26�1.59�?m) gelatinized at lower temperatures (lower DSC transition and pasting temperatures), showed higher paste viscosities and produced more elastic gels (lower tan ? and higher G?). Starch granule size related positively with the proportion of amylopectin chains with DP < 12, paste viscosities and dynamic rheological moduli while negatively with non-starch components, gel tan ? and the proportion of amylopectin chains with DP > 12. Starches with greater proportion of amylopectin chains with DP > 12 showed higher gelatinization temperatures, while shorter chains (DP < 12), lipids and proteins contributed to reduced retrogradation tendencies (lower percent retrogradation). � 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Structural and functional properties of amaranth starches from residue obtained during protein extraction
    (Springer, 2021-07-26T00:00:00) Shevkani, Khetan; Singh, Narpinder; Isono, Naoto; Noda, Takahiro
    The present study evaluated Amaranthus caudatus (AC) and A. hypochondriacus (AH) starches obtained as coproduct during protein extraction for composition, granule size, amylopectin fine structure, thermal, retrogradation, pasting and dynamic rheological-properties to elucidate structure-function relationships. The starches exhibited unimodal particle size distribution with mean granule size of 1.26�3.12�?m. AC starch with larger granules (mean granule size 3.12�?m) than AH starches (1.26�1.59�?m) gelatinized at lower temperatures (lower DSC transition and pasting temperatures), showed higher paste viscosities and produced more elastic gels (lower tan ? and higher G?). Starch granule size related positively with the proportion of amylopectin chains with DP < 12, paste viscosities and dynamic rheological moduli while negatively with non-starch components, gel tan ? and the proportion of amylopectin chains with DP > 12. Starches with greater proportion of amylopectin chains with DP > 12 showed higher gelatinization temperatures, while shorter chains (DP < 12), lipids and proteins contributed to reduced retrogradation tendencies (lower percent retrogradation). � 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.