School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
6 results
Search Results
Item Thermophysical Assessments on Self-Assembled Tellurium Nanostructures(American Chemical Society, 2023-09-01T00:00:00) Sudheer, Manjima; Rani, Pinki; Patole, Shashikant P.; Alegaonkar, Prashant S.Thermal properties of self-assembled nanostructures are of great importance to explain the structural phase transformation phenomenon. We report on the thermophysical assessments on tellurium nanostructures (TeN) that have been prepared using a facile wet-chemical technique by admixing precursor sodium telluride (Na2TeO3) and sodium molybdate (Na2MoO4) catalysts in hydrazine hydrate solution and heated at 120 �C, over 5-7 h. The extracted products (interval: 0.5 h) were subjected to a number of spectro-microscopic techniques including thermal measurements. Under identical growth conditions, the morphology of TeN was found to be transformed from Te nanotube (TT) to Te nanoflake (TF) at 6 h. Analysis revealed that Mo participated actively during 6 h of growth time, thereby making bonds with oxygen and the Te host lattice. At the vicinity of the phase transformation, Mo acquired an interstitial position in the hexagonal motif due to enhancement in catalytic efficiency that led to the formation of MoO2- moieties, which transiently reacted with host lattices resulting in surface charging of the tubes. This, in turn, created the coalescing effect with neighboring colloidal tubes through the van der Waals interaction. Thermal properties such as thermal conductivity, effusivity, diffusivity, and specific heat studied for TeN showed prominent surface effects. The increased surface area and enhanced amount of polycrystallinity resulted in unprecedently low thermal properties of TF due to severe phonon confinement. � 2023 American Chemical Society.Item Janus ?-PdXY (X/Y = S, Se, Te) materials with high anisotropic thermoelectric performance(Royal Society of Chemistry, 2023-02-21T00:00:00) Jakhar, Mukesh; Sharma, Raman; Kumar, AshokTwo-dimensional (2D) materials have garnered considerable attention as emerging thermoelectric (TE) materials owing to their unique density of states (DOS) near the Fermi level. We investigate the TE performance of Janus ?-PdXY (X/Y = S, Se, Te) monolayer materials as a function of carrier concentration and temperature in the mid-range from 300 to 800 K by combining density functional theory (DFT) and semi-classical Boltzmann transport theory. The phonon dispersion spectra and AIMD simulations confirm their thermal and dynamic stability. The transport calculation results reveal the highly anisotropic TE performance of both n and p-type Janus ?-PdXY monolayers. Meanwhile, the coexistence of low phonon group velocity and a converged scattering rate leads to a lower lattice thermal conductivity (Kl) of 0.80 W mK?1, 0.94 W mK?1, and 0.77 W mK?1 along the y-direction for these Janus materials, while the high TE power factor is attributed to the high Seebeck coefficient (S) and electrical conductivity, which are due to the degenerate top valence bands of these Janus monolayers. The combination of lower Kl and a high-power factor at 300 K (800 K) leads to an optimal figure of merit (ZT) of 0.68 (2.21), 0.86 (4.09) and 0.68 (3.63) for p-type Janus PdSSe, PdSeTe and PdSTe monolayers, respectively. To evaluate rational electron transport properties, the effects of acoustic phonon scattering (?ac), impurity scattering (?imp), and polarized phonon scattering (?polar) are included in the temperature-dependent electron relaxation time. These findings indicated that the Janus ?-PdXY monolayers are promising candidates for TE conversion devices. � 2023 The Royal Society of Chemistry.Item First principles study of 2D ring-Te and its electrical contact with a topological Dirac semimetal(Royal Society of Chemistry, 2023-02-10T00:00:00) Singh, Jaspreet; Kumar, AshokIn recent years, researchers have manifested their interest in two-dimensional (2D) mono-elemental materials of group-VI elements because of their excellent optoelectronic, photovoltaic and thermoelectric properties. Despite the intensive recent research efforts, there is still a possibility of novel 2D allotropes of these elements due to their multivalency nature. Here, we have predicted a novel 2D allotrope of tellurium (ring-Te) using density functional theory. Its stability is confirmed by phonon and ab initio molecular dynamics simulations. Ring-Te has an indirect band gap of 0.69 eV (1.16 eV) at the PBE (HSE06) level of theories and undergoes an indirect-direct band gap transition under tensile strain. The higher carrier mobility of holes (?103 cm2 V?1 s?1), good UV-visible light absorption ability and low exciton binding (?0.35 eV) of ring-Te give rise to its potential applications in optoelectronic devices. Furthermore, the electrical contact of ring-Te with a topological Dirac semimetal (sq-Te) under the influence of an electric field shows that the Schottky barriers and contact types can undergo transition from p-type to n-type Schottky contact and then to ohmic contact at a higher electric field. Our study provides an insight into the physics of designing high-performance electrical coupled devices composed of 2D semiconductors and topological semimetals. � 2023 The Royal Society of Chemistry.Item Janus ?-Te2X (X = S, Se) monolayers for efficient excitonic solar cells and photocatalytic water splitting(Royal Society of Chemistry, 2023-01-04T00:00:00) Singh, Jaspreet; Kumar, AshokHighly efficient, environmentally friendly and renewable sources of energy are of great need today to combat increasing energy demands and environmental pollution. In this work, we have investigated the novel 2D allotropes, i.e., ?-Te2X (X = S, Se), using first-principles calculations and study their potential applications in light harvesting devices. Both the monolayers possess high stability and semiconducting nature with an indirect band gap. The high carrier mobilities and excellent optical absorption of these monolayers make them potential candidates for solar conversion applications. We have proposed the type-II heterojunction solar cells and calculated their power conversion efficiencies (PCEs). The small conduction band offset and appropriate band gap of donor material in the case of ?-Te2S(S-Side)/?-Te2S(Te-Side) heterojunction results in a PCE of ?21%. In addition, the band alignments of these monolayers properly engulf the redox potentials of water. The overpotentials required to trigger hydrogen reduction (HER) and water oxidation (OER) half reactions reveal that HER and OER preferred acidic and neutral media, respectively. The calculated solar-to-hydrogen (STH) efficiencies of ?-Te2S (?-Te2Se) monolayers turn out to be ?13% (?12%), respectively, which implies their practical applications in water splitting. Thus, our work provides strong evidence regarding the potential applications of these materials in the field of light harvesting devices. � 2023 The Royal Society of Chemistry.Item Mechanical, optical and thermoelectric properties of Janus BiTeCl monolayer(Elsevier Ltd, 2022-04-29T00:00:00) Chauhan, Poonam; Singh, Jaspreet; Kumar, AshokWe report mechanical, optical and thermoelectric properties of recently fabricated Janus BiTeCl monolayer using density functional and semi-classical Boltzmann transport theory. Janus BiTeCl monolayer exhibits a direct bandgap, high carrier mobility (?103 cm2V?1s?1) and high optical absorption in the UV�visible region. The mechanical behavior of the Janus BiTeCl monolayer is nearly isotropic having an ideal tensile strength ?15 GPa. The higher value of the Gruneisen parameter (?), a low value of phonon group velocity (vg), and very little phonon scattering time (?p) lead to low lattice thermal conductivity (1.46 W/mK) of Janus BiTeCl monolayer. The combined effect of thermal conductivity and electronic transport coefficients of Janus BiTeCl monolayer results in the figure of merit (ZT) in the range of 0.43�0.75 at 300�500 K. Our results suggest Janus BiTeCl monolayer be a potential candidate for optoelectronic and moderate temperature thermoelectric applications. � 2022Item Synergistic photophysical and electrochemical response of Te @ PANI for energy harvesting(Springer, 2023-01-07T00:00:00) Rani, Pinki; Jewariya, Yogesh; Haldar, Krishna Kanta; Biswas, Rathindranath; Alegaonkar, Prashant S.Materials with synergistic functionality are of great importance in consumer electronics. We report on the preparation and assessments of Te @ PANI composite for energy conversion and storage application. Initially, (5�15%) Te @ PANI composites were synthesized by the facile, room temperature, time and cost-effective solid-state synthesis technique followed by characterizations using Fourier transform infra-red, UV-Visible, energy dispersive spectroscopic including X-ray diffractometry and field electron scanning microscopy. Te exfoliates polymeric segments of PANI by bonding benzenoid rings through sulphonated impurity sites which have a profound impact on symmetry molecular bond vibrations. Its analysis is presented. In photophysical application, both dark and luminescent I-V measurements have been performed that showed a linear variation with minimum photo-resistance offered by 10% composite and reaching current > 10�mA under 1.5�V biased conditions. In storage response, Te @ PANI supercapacitor devices are dominating in inductive coupling over capacitive coupling by ten times. Corresponding shunt impedance is seen to be favourably lower for 10% composition, and respective charge transfer impedance has also followed identical behaviour over other classes of samples. The quality factor of the device for 10% is found to be almost twelve times better. However, at a low scan rate (10�mV/s), the presence of Te has changed the tendency of ion migration, thereby, reducing the magnitude of ion current by about three times with an increase in Te from 5 to 15%. Thus, fabricated composite demonstrated synergistic aspects of energy. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.