School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 7 of 7
  • Item
    Iron content titanium dioxide nanoparticles as exogenous contrast agent for tissue imaging using swept-source optical coherence tomography
    (American Institute of Physics Inc., 2021-01-08T00:00:00) Barkhade, Tejal; Indoliya, Abhishek; Poddar, Raju; Mahapatra, Santosh Kumar; Banerjee, Indrani
    Ex vivo tissue imaging was performed by swept-source optical coherence tomography (SS-OCT) using titanium dioxide (TiO2) and Fe content TiO2 nanoparticles (NPs). The comparative effects of TiO2 and Fe content TiO2 NPs in terms of contrast enhancement, penetration, scattering, and accumulation in the chicken breast tissue have been monitored at different exposure times. Powder NP samples were synthesized using the sol-gel method, and characterization was carried out via transmission electron microscopy, x-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy techniques. Fe incorporation in the TiO2 matrix reduces its toxic effect on tissue skin and produces a safe exogenous contrast agent, which is analyzed by SS-OCT. The scattering coefficients and contrast to noise ratio of the tissues with and without NPs were determined to study the imaging efficacy. The improvement in the coefficient was observed with an increase in the exposure time of NPs. Nano-TiO2 has shown the ability to penetrate within the tissue layer up to 780 ?m while Fe content TiO2 NPs samples showed the lowest rate of penetration up to 210 ?m after a 30 min time interval. � 2021 Author(s).
  • Item
    Ag-S Type Quantum Dots versus Superatom Nanocatalyst: A Single Sulfur Atom Modulated Decarboxylative Radical Cascade Reaction
    (American Chemical Society, 2023-04-06T00:00:00) Meena, Sangeeta; Dastider, Saptarshi G.; Nishad, Chandra Shekhar; Jangid, Dilip Kumar; Kumar, Pankaj; Khirid, Samreet; Bose, Shubhankar Kumar; Mondal, Krishnakanta; Banerjee, Biplab; Dhayal, Rajendra S.
    The preparation of high-nuclearity silver nanoclusters in quantitative yield remains exclusive and their potential applications in the catalysis of organic reactions are still undeveloped. Here, we have synthesized a quantum dot (QD)-based catalyst, [Ag62S13(SBut)32](PF6)4 (denoted as Ag62S12-S) in excellent yield that enables the direct synthesis of pharmaceutically precious 3,4-dihydroquinolinone in 92% via a decarboxylative radical cascade reaction of cinnamamide with ?-oxocarboxylic acid under mild reaction conditions. In comparison, a superatom [Ag62S12(SBut)32](PF6)2 (denoted as Ag62S12) with identical surface anatomy and size, but without a central S2- atom in the core, gives an improved yield (95%) in a short time and exhibits higher reactivity. Multiple characterization techniques (single-crystal X-ray diffraction, nuclear magnetic resonance (1H and 31P), electrospray ionization mass spectrometry, energy dispersive X-ray spectroscopy, Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis) confirm the formation of Ag62S12-S. The BET results expose the total active surface area in supporting a single e- transfer reaction mechanism. Density functional theory reveals that leaving the central S atom of Ag62S12-S leads to higher charge transfer from Ag62S12 to the reactant, accelerates the decarboxylation process, and correlates the catalytic properties with the structure of the nanocatalyst. � 2023 American Chemical Society.
  • Item
    Coupling Nonstoichiometric Zn0.76Co0.24S with NiCo2S4Composite Nanoflowers for Efficient Synergistic Electrocatalytic Oxygen and Hydrogen Evolution Reactions
    (American Chemical Society, 2022-12-15T00:00:00) Biswas, Rathindranath; Thakur, Pooja; Ahmed, Imtiaz; Rom, Tanmay; Ali, Mir Sahidul; Patil, Ranjit A.; Kumar, Bhupender; Som, Shubham; Chopra, Deepak; Paul, Avijit Kumar; Ma, Yuan-Ron; Haldar, Krishna Kanta
    Transition-metal sulfide-based composite nanomaterials have garnered extensive interest not only for their unique morphological architectures but also for exploring as a noble-metal-free cost-effective, durable, and highly stable catalyst for electrochemical water splitting. In this work, we synthesized in situ nonstoichiometric Zn0.76Co0.24S with NiCo2S4binary composite flowers (Zn0.76Co0.24S/NiCo2S4) in one step by thermal decomposition of Zn2[PDTC]4and Ni[PDTC]2complexes by a solvothermal process in a nonaqueous medium from their molecular precursor, and their potential application in electrochemical oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) was investigated. Field-emission scanning electron microscopy and transmission electron microscopy analyses revealed the flower-shaped morphology of as-synthesized Zn0.76Co0.24S/NiCo2S4. Again, the structural and chemical compositions were confirmed through powder X-ray diffraction and X-ray photoelectron spectroscopy studies, respectively. The as-obtained 3D flower-type Zn0.76Co0.24S/NiCo2S4nanostructure was further subject to electrochemical OER and HER in alkaline and acidic media, respectively. Zn0.76Co0.24S/NiCo2S4showed low overpotential values of 248 mV (Tafel slope, 85 mV dec-1) and 141 mV (Tafel slope, 79 mV dec-1) for OER and HER activities, respectively, due to the synergistic effects of Zn0.76Co0.24S and NiCo2S4. Several long-term stability tests also affirmed that the Zn0.76Co0.24S/NiCo2S4composite nanostructure is a highly stable and efficient electrocatalyst toward OER and HER activities as compared to the recently reported superior bifunctional electrocatalysts as well as state-of-the-art materials. � 2023 American Chemical Society. All rights reserved.
  • Item
    Interfacial Engineering of CuCo2S4/g-C3N4Hybrid Nanorods for Efficient Oxygen Evolution Reaction
    (American Chemical Society, 2021-07-29T00:00:00) Biswas, Rathindranath; Thakur, Pooja; Kaur, Gagandeep; Som, Shubham; Saha, Monochura; Jhajhria, Vandna; Singh, Harjinder; Ahmed, Imtiaz; Banerjee, Biplab; Chopra, Deepak; Sen, Tapasi; Haldar, Krishna Kanta
    Altering the morphology of electrochemically active nanostructured materials could fundamentally influence their subsequent catalytic as well as oxygen evolution reaction (OER) performance. Enhanced OER activity for mixed-metal spinel-type sulfide (CuCo2S4) nanorods is generally done by blending the material that has high conductive supports together with those having a high surface volume ratio, for example, graphitic carbon nitrides (g-C3N4). Here, we report a noble-metal-free CuCo2S4 nanorod-based electrocatalyst appropriate for basic OER and neutral media, through a simple one-step thermal decomposition approach from its molecular precursors pyrrolidine dithiocarbamate-copper(II), Cu[PDTC]2, and pyrrolidine dithiocarbamate-cobalt(II), Co[PDTC]2 complexes. Transmission electron microscopy (TEM) images as well as X-ray diffraction (XRD) patterns suggest that as-synthesized CuCo2S4 nanorods are highly crystalline in nature and are connected on the g-C3N4 support. Attenuated total reflectance-Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies affirm the successful formation of bonds that bridge (Co-N/S-C) at the interface of CuCo2S4 nanorods and g-C3N4. The kinetics of the reaction are expedited, as these bridging bonds function as an electron transport chain, empowering OER electrocatalytically under a low overpotential (242 mV) of a current density at 10 mA cm-2 under basic conditions, resulting in very high durability. Moreover, CuCo2S4/g-C3N4 composite nanorods exhibit a high catalytic activity of OER under a neutral medium at an overpotential of 406 mV and a current density of 10 mA cm-2. � 2021 American Chemical Society.
  • Item
    Green Approach for the Fabrication of Au/ZnO Nanoflowers: A Catalytic Aspect
    (American Chemical Society, 2021-03-19T00:00:00) Biswas, Rathindranath; Banerjee, Biplab; Saha, Monochura; Ahmed, Imtiaz; Mete, Shouvik; Patil, Ranjit A.; Ma, Yuan-Ron; Haldar, Krishna Kanta
    An easy, environmentally benign, and biomimetic approach employing Azadirachta indica (neem) leaf extract as a reducing as well as capping agent was used for the fabrication of gold (Au)/zinc oxide (ZnO) hybrid nanoflowers in one pot without utilizing any hazardous chemicals. The different phytoconstituents, for example, nimbolide, azadirachtin, ascorbate, etc., present in A. indica (neem) leaf extract synergistically reduce gold(III) ions to gold(0), which later on acts as an active surface for the growth of zinc oxide (ZnO) via thermal decomposition of sodium zincate [Na2Zn(OH)4]. The development of Au/ZnO hybrid nanoflowers was observed by estimating the absorption maxima at various time intervals in the wake of adding a Au precursor to the aqueous extract. X-ray diffraction (XRD) studies and X-ray photoelectron spectroscopy (XPS) investigation unambiguously confirm the formation of highly crystalline Au/ZnO composed of Au(0) and ZnO. The as-synthesized Au/ZnO hybrid nanoflowers were analyzed utilizing different spectroscopic and microscopic techniques. The transmission electron microscopy (TEM) images clearly show that the synthesized hybrid Au/ZnO nanoflowers are monodisperse and uniform. The fabricated Au/ZnO nanoflowers were used as a catalyst for the efficient reduction of various aromatic nitro compounds to corresponding amino compounds with excellent yield (76-94%) in the presence of reducing agent sodium borohydride. The superior catalytic properties were credited to the extraordinary nanoflower morphology and the synergistic impact of the typified Au nanoparticles. � 2021 American Chemical Society.
  • Item
    Combing of picogram level DNA equivalent to genomic DNA present in single human cell by self propelled droplet motion over a stable gradient surface
    (Academic Press Inc., 2023-11-08T00:00:00) Yadav, Hemendra; Algaonkar, Prashant S.; Chakraborty, Sudip; Ramakrishna, Wusirika
    DNA combing is a powerful technique for studying replication profile, fork-directionality and fork velocity. At present, there is requirement of a methodology to comb DNA present in a single human cell for studying replication dynamics at early embryonic stage. In our study, a surface having dual characteristics i.e., affinity towards negatively charged single DNA molecules and a hydrophobic gradient for self propelled droplet motion of combing solution was developed. The surface was made by coating of TCOS (trichloro-octylsilane) by vapor diffusion on APTES (Aminopropyl-triethoxysilane) coated glass slides. A gradient surface having high deposition efficiency (DE) was developed on which 5 picogram DNA equivalent to genomic DNA present in one single human cell can be combed. The gradient surface was thermostable in nature having the ability to sustain boiling temperature for two hours and sustain anisotropy in 70 % ethanol for 80 h. Applicability for multiple runs was enhanced such that the surface can be used for 13�14 times. Factors associated with gradient surface are unidirectional movement of combing solution droplet over the gradient surface for combing straight DNA molecules and a longer gradient surface of more than 1 cm such that long size DNA molecules can be combed. Ellipsometry and contact angle hysteresis confirmed the presence of hydrophobic gradient. XPS (X-ray photoelectron spectroscopy) and FTIR (Fourier Transform Infrared Spectroscopy) confirmed the presence of characteristic affinity towards negatively charged DNA molecules on the gradient surface. Combing solution was optimized for increasing deposition efficiency and for increasing the applicability of gradient surface for multiple runs. High temperature of combing solution was found to increase Deposition Efficiency. Combing solution was also optimized for combing single DNA molecules over the gradient surface. Single DNA molecules were combed by reducing pH and lowering concentration of triton-X in the combing solution. Dye: bp ratio was optimized for high fluorescent intensity and low surface background. � 2023 Elsevier Inc.
  • Thumbnail Image
    Item
    Correlation between structural, magnetic and ferroelectric properties of Fe-doped (Ba-Ca)TiO3 lead-free piezoelectric
    (Elsevier Ltd, 2017) Keswani, B.C.; Devan, R.S.; Kambale, R.C.; James, A.R.; Manandhar, S.; Kolekar, Y.D.; Ramana, C.V.
    The effect of iron (Fe) doping modification on the structure and properties of Ba0.92Ca0.08TiO3 (BCT8) lead-free ferroelectrics is investigated in detail. Intrinsic BaTiO3 (BT) and Ba0.92Ca0.08TiO3 (BCT8) lead-free polycrystalline ceramics were synthesized by conventional solid-state chemical reaction method. The crystal structure, morphology, chemical composition and valence state, magnetic and ferroelectric properties of BCT8 ceramics were evaluated as a function of variable Fe-content (0–5 wt%). X-ray diffraction measurements coupled with Rietveld refinement analyses indicate that the BT, BCT8, and Fe-BCT8 ceramics crystallize in single phase tetragonal structure. Phase transformation occurs with higher Fe doping; Fe-BCT8 ceramics with 5 wt% Fe exhibits fully transformed orthorhombic structure. The crystal structure and phase formation of these ceramics was further confirmed by the Raman spectroscopic (RS) measurements. The RS data coupled with high-resolution X-ray photoelectron spectroscopic (XPS) analyses also confirm the formation of single phase materials without any presence of secondary or impurity phases. Microstructure imaging analyses indicate that the grain size was ∼1 μm, while agglomeration and inhomogeneous distribution were observed with Fe doping. Polarization-electric field (P-E) hysteresis and strain-electric field (S-E) hysteresis measurements revealed the ferroelectric and piezoelectric nature of the ceramics. Ferroelectric and piezoelectric properties were observed to be suppressed for Fe doped BCT8 ceramics due to the partial replacement of Ti4+ by Fe3+ as confirmed by the chemical analyses made using XPS. Temperature dependent dielectric measurements for Fe doped BCT8 show a drastic decrease in ferroelectric Curie temperature (Tc), along with a decrease in dielectric constant compared to that of undoped BCT8. Magnetization (M-H) measurements confirm the presence of long-range magnetic ordering for 5% Fe-doped BCT8 sample. The results demonstrate that addition of 5% Fe in lead-free BCT8 perovskite induces the magnetic ordering and a switchable ferroelectric state, which evidences the presence of multiferroic nature that can be used for four-bit memory and switching applications.