School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
4 results
Search Results
Item Onco-Pathogen Mediated Cancer Progression and Associated Signaling Pathways in Cancer Development(MDPI, 2023-05-28T00:00:00) Kannampuzha, Sandra; Gopalakrishnan, Abilash Valsala; Padinharayil, Hafiza; Alappat, Reema Rose; Anilkumar, Kavya V.; George, Alex; Dey, Abhijit; Vellingiri, Balachandar; Madhyastha, Harishkumar; Ganesan, Raja; Ramesh, Thiyagarajan; Jayaraj, Rama; Prabakaran, D.S.Infection with viruses, bacteria, and parasites are thought to be the underlying cause of about 8�17% of the world�s cancer burden, i.e., approximately one in every five malignancies globally is caused by an infectious pathogen. Oncogenesis is thought to be aided by eleven major pathogens. It is crucial to identify microorganisms that potentially act as human carcinogens and to understand how exposure to such pathogens occur as well as the following carcinogenic pathways they induce. Gaining knowledge in this field will give important suggestions for effective pathogen-driven cancer care, control, and, ultimately, prevention. This review will mainly focus on the major onco-pathogens and the types of cancer caused by them. It will also discuss the major pathways which, when altered, lead to the progression of these cancers. � 2023 by the authors.Item Bacteriophages Concept and Applications: A Review on Phage Therapy(Bentham Science Publishers, 2022-11-07T00:00:00) Sahu, Rasti; Singh, Ankit Kumar; Kumar, Adarsh; Singh, Kuldeep; Kumar, PradeepThe nature of phages was a matter of dispute, which was resolved in 1940, and it was continued to develop their activity and application in the Soviet Union and Eastern Europe. Bacterio-phages were first employed in 1919 to treat bacterial illnesses caused by Citrobacter, Enterobacter, and Pseudomonas. Bacteriophages range in complexity from simple spherical viruses with genome sizes of less than 5 kbp to complicated viruses with genome sizes surpassing 280 kbp. They have two significant parts, head and tail, and are made up of numerous copies of more than 40 distinct proteins. Bacteriophages have been demonstrated to bind with receptors in the walls of both gram-positive and gram-negative bacteria, ranging from peptide sequences to polysaccharide moieties. Depending on the type of phage and the physiological state of the bacterium, the life cycle may diverge into the lytic cycle or lysogenic cycle. Lytic-lysogenic switch depends on a variety of inducing factors. Bacteriophage therapy can be administered via several routes, but parenteral routes are the most effec-tive. Auto-dosing, single-dose potential, lack of cross-resistance with antibiotics, etc., are several advantages of phage therapy over antibiotic treatment. Bacteriophages are attracting much attention because of their potential advantages and wide applications as antibacterial agents, diagnostic technolo-gies, phage-based products, and biocontrol agents. They also have several applications in the food industry, agriculture/crop, farm animal and bee protection, environmental, and biosensor development. � 2023 Bentham Science Publishers.Item Bacillus sp. and arbuscular mycorrhizal fungi consortia enhance wheat nutrient and yield in the second-year field trial: Superior performance in comparison with chemical fertilizers(John Wiley and Sons Inc, 2021-11-20T00:00:00) Yadav, Radheshyam; Ror, Pankaj; Beniwal, Rahul; Kumar, Sanjeev; Ramakrishna, WusirikaAims: The aim of the study is to analyse the effect of microbial consortia for wheat biofortification, growth, yield and soil fertility as part of a 2-year field study and compare it with the use of chemical fertilizers. Methods and Results: A field trial (second year) was conducted with various combinations of plant growth�promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) treatments, ranging from a single inoculant to multiple combinations. The microbial consortia used were Bacillus sp. and AMF based on first-year field trial results. The consortia based on native (CP4) and non-native (AHP3) PGPB (Bacillus sp.) and AMF performed better in terms of nutrients content in wheat grain tissue and yield-related traits compared with chemical fertilizer treated and untreated control. Dual treatment of PGPB (CP4+AHP3) combined with AMF resulted in a significant increase in antioxidants. The spatial colonization of AMF in roots indicated that both the isolates CP4 and AHP3 were able to enhance the AMF colonization in root tissue. Furthermore, soil enzymes� activities were higher with the PGPB and AMF combination giving the best results. A positive correlation was recorded between plant growth, grain yield and soil physicochemical parameters. Conclusions: Our findings confirm that the combined treatment of CP4 and AHP3 and AMF functions as an effective microbial consortium with excellent application prospects for wheat biofortification, grain yield and soil fertility compared with chemical fertilizers. Significance and Impact of Study: The extensive application of chemical fertilizers on low-yielding field sites is a severe concern for cereal crops, especially wheat in the Asian continent. This study serves as a primer for implementing site-specific sustainable agricultural-management practices using a green technology leading to significant gains in agriculture. � 2021 The Society for Applied MicrobiologyItem Bacillus sp. and arbuscular mycorrhizal fungi consortia enhance wheat nutrient and yield in the second-year field trial: Superior performance in comparison with chemical fertilizers(John Wiley and Sons Inc, 2021-11-20T00:00:00) Yadav, Radheshyam; Ror, Pankaj; Beniwal, Rahul; Kumar, Sanjeev; Ramakrishna, WusirikaAims: The aim of the study is to analyse the effect of microbial consortia for wheat biofortification, growth, yield and soil fertility as part of a 2-year field study and compare it with the use of chemical fertilizers. Methods and Results: A field trial (second year) was conducted with various combinations of plant growth�promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) treatments, ranging from a single inoculant to multiple combinations. The microbial consortia used were Bacillus sp. and AMF based on first-year field trial results. The consortia based on native (CP4) and non-native (AHP3) PGPB (Bacillus sp.) and AMF performed better in terms of nutrients content in wheat grain tissue and yield-related traits compared with chemical fertilizer treated and untreated control. Dual treatment of PGPB (CP4+AHP3) combined with AMF resulted in a significant increase in antioxidants. The spatial colonization of AMF in roots indicated that both the isolates CP4 and AHP3 were able to enhance the AMF colonization in root tissue. Furthermore, soil enzymes� activities were higher with the PGPB and AMF combination giving the best results. A positive correlation was recorded between plant growth, grain yield and soil physicochemical parameters. Conclusions: Our findings confirm that the combined treatment of CP4 and AHP3 and AMF functions as an effective microbial consortium with excellent application prospects for wheat biofortification, grain yield and soil fertility compared with chemical fertilizers. Significance and Impact of Study: The extensive application of chemical fertilizers on low-yielding field sites is a severe concern for cereal crops, especially wheat in the Asian continent. This study serves as a primer for implementing site-specific sustainable agricultural-management practices using a green technology leading to significant gains in agriculture. � 2021 The Society for Applied Microbiology