Analysis of TCP Transcription Factors Revealed Potential Roles in Plant Growth and Fusarium oxysporum f.sp. cubense Resistance in Banana (cv. Rasthali)

No Thumbnail Available

Date

2022-07-05T00:00:00

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

The TCP transcription factor gene family is highly conserved among the plant species. It plays a major role in the regulation of flower symmetry, cell division, and development of leaf, fibre, and nodule in the plants by controlling the synthesis of various plant hormones. Banana is a major staple crop in the world. However, Fusarium oxysporum f. sp. cubense (Foc) infection is a major threat to banana production. The role of TCP gene family during the Foc infection is not explored till now. Herein, a total of 27 non-redundant TCP (MaTCP) gene sequences were retrieved from the banana genome and analysed for structural characteristics, phylogenetic correlation, subcellular, and chromosomal localizations. Phylogenetic analysis showed that the MaTCP proteins were highly conserved among different species and found to be the closest relative of the Oryza sativa and Zea mays. Promoter analysis of the TCP sequences showed that the cis-acting regulatory elements are associated with various stresses and environmental and hormonal signals. The higher transcript accumulation in developing tissues (fruit finger, leaves, and stem) than of mature tissues (peel and pulp) showed a significant role of MaTCP in banana (cv. Rasthali) growth and development. Further, higher expression of the certain MaTCPs in Foc race 1-infected root (MaTCP2, MaTCP4, MaTCP6) and leaf (MaTCP9 and MaTCP11) tissues of Rasthali indicated their promising role during Fusarium infection. This study will underpin the facet of TCP transcription factors on the development of biotic (Foc) stress resistance in banana. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Description

Keywords

Banana, Biotic stress, Fusarium oxysporum f. sp. cubense (Foc), Jasmonic acid, Phylogenetic analysis, TCP transcription factor

Citation

Endorsement

Review

Supplemented By

Referenced By