Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films

dc.contributor.authorArya, A.
dc.contributor.authorSharma, A.L.
dc.date.accessioned2018-07-14T01:19:00Z
dc.date.accessioned2024-08-13T12:45:51Z
dc.date.available2018-07-14T01:19:00Z
dc.date.available2024-08-13T12:45:51Z
dc.date.issued2018
dc.description.abstractThe present paper is focused toward the preparation of the flexible and free-standing blend solid polymer electrolyte films based on PEO-PVP complexed with NaPF6 by the solution cast technique. The structural/morphological features of the synthesized polymer nanocomposite films have been investigated in detail using X-ray diffraction, Fourier transform infra-red spectroscopy, Field emission scanning electron microscope, and Atomic force microscopy techniques. The film PEO-PVP + NaPF6 ((Formula presented.)8) exhibits highest ionic conductivity ~ 5.92 ? 10?6 S cm?1 at 40 ?C and ~ 2.46 ? 10?4 S cm?1 at 100 ?C. The temperature-dependent conductivity shows an Arrhenius type behavior and activation energy decreases with the addition of salt. The high temperature (100 ?C) conductivity monitoring is done for the optimized PEO-PVP + NaPF6 ((Formula presented.)8) highly conductive system and the conductivity is still maintained stable up to 160 h (approx. 7 days). The thermal transitions parameters were measured by the differential scanning calorimetry (DSC) measurements. The prepared polymer electrolyte film displays the smoother surface on addition of salt and a thermal stability up to 300 ?C. The ion transference number (tion) for the highest conducting sample is found to be 0.997 and evidence that the present system is ion dominating with negligible electron contribution. Both linear sweep voltammetry and cyclic voltammetry supports the use of prepared polymer electrolyte with long-term cycle stability and thermal stability for the solid-state sodium ion batteries. Finally, a two peak percolation mechanism has been proposed on the basis of experimental findings. [Figure not available: see fulltext.] ? 2018 Springer-Verlag GmbH Germany, part of Springer Natureen_US
dc.identifier.citationArya, A., & Sharma, A. L. (2018). Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. Journal of Solid State Electrochemistry, 1-21. doi: 10.1007/s10008-018-3965-4en_US
dc.identifier.doi10.1007/s10008-018-3965-4
dc.identifier.issn14328488
dc.identifier.urihttps://kr.cup.edu.in/handle/32116/1415
dc.identifier.urlhttps://link.springer.com/article/10.1007%2Fs10008-018-3965-4
dc.language.isoenen_US
dc.publisherSpringer New York LLCen_US
dc.subjectActivation energyen_US
dc.subjectAtomic force microscopyen_US
dc.subjectCyclic voltammetryen_US
dc.subjectDifferential scanning calorimetryen_US
dc.subjectFilm preparationen_US
dc.subjectMetal ionsen_US
dc.subjectNanocomposite filmsen_US
dc.subjectNanocompositesen_US
dc.subjectPercolation (solid state)en_US
dc.subjectPolymer filmsen_US
dc.subjectScanning electron microscopyen_US
dc.subjectSodium compoundsen_US
dc.subjectSodium-ion batteriesen_US
dc.subjectSolid electrolytesen_US
dc.subjectSolventsen_US
dc.subjectThermodynamic stabilityen_US
dc.subjectX ray diffractionen_US
dc.subjectElectrical conductivityen_US
dc.subjectField emission scanning electron microscopesen_US
dc.subjectFourier transform infra redsen_US
dc.subjectPolymer electrolyteen_US
dc.subjectPolymer electrolyte films;en_US
dc.titleOptimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite filmsen_US
dc.title.journalJournal of Solid State Electrochemistry
dc.typeArticle in Pressen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
3353.pdf
Size:
5.43 MB
Format:
Adobe Portable Document Format