Interfacial Engineering of CuCo2S4/g-C3N4Hybrid Nanorods for Efficient Oxygen Evolution Reaction

dc.contributor.authorBiswas, Rathindranath
dc.contributor.authorThakur, Pooja
dc.contributor.authorKaur, Gagandeep
dc.contributor.authorSom, Shubham
dc.contributor.authorSaha, Monochura
dc.contributor.authorJhajhria, Vandna
dc.contributor.authorSingh, Harjinder
dc.contributor.authorAhmed, Imtiaz
dc.contributor.authorBanerjee, Biplab
dc.contributor.authorChopra, Deepak
dc.contributor.authorSen, Tapasi
dc.contributor.authorHaldar, Krishna Kanta
dc.date.accessioned2024-01-21T10:32:56Z
dc.date.accessioned2024-08-13T11:16:38Z
dc.date.available2024-01-21T10:32:56Z
dc.date.available2024-08-13T11:16:38Z
dc.date.issued2021-07-29T00:00:00
dc.description.abstractAltering the morphology of electrochemically active nanostructured materials could fundamentally influence their subsequent catalytic as well as oxygen evolution reaction (OER) performance. Enhanced OER activity for mixed-metal spinel-type sulfide (CuCo2S4) nanorods is generally done by blending the material that has high conductive supports together with those having a high surface volume ratio, for example, graphitic carbon nitrides (g-C3N4). Here, we report a noble-metal-free CuCo2S4 nanorod-based electrocatalyst appropriate for basic OER and neutral media, through a simple one-step thermal decomposition approach from its molecular precursors pyrrolidine dithiocarbamate-copper(II), Cu[PDTC]2, and pyrrolidine dithiocarbamate-cobalt(II), Co[PDTC]2 complexes. Transmission electron microscopy (TEM) images as well as X-ray diffraction (XRD) patterns suggest that as-synthesized CuCo2S4 nanorods are highly crystalline in nature and are connected on the g-C3N4 support. Attenuated total reflectance-Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies affirm the successful formation of bonds that bridge (Co-N/S-C) at the interface of CuCo2S4 nanorods and g-C3N4. The kinetics of the reaction are expedited, as these bridging bonds function as an electron transport chain, empowering OER electrocatalytically under a low overpotential (242 mV) of a current density at 10 mA cm-2 under basic conditions, resulting in very high durability. Moreover, CuCo2S4/g-C3N4 composite nanorods exhibit a high catalytic activity of OER under a neutral medium at an overpotential of 406 mV and a current density of 10 mA cm-2. � 2021 American Chemical Society.en_US
dc.identifier.doi10.1021/acs.inorgchem.1c01566
dc.identifier.issn201669
dc.identifier.urihttps://kr.cup.edu.in/handle/32116/3218
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01566
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectCatalyst activityen_US
dc.subjectCobalt compoundsen_US
dc.subjectCobalt metallographyen_US
dc.subjectElectrocatalysisen_US
dc.subjectElectrocatalystsen_US
dc.subjectElectron transport propertiesen_US
dc.subjectFourier transform infrared spectroscopyen_US
dc.subjectGraphitic Carbon Nitrideen_US
dc.subjectHigh resolution transmission electron microscopyen_US
dc.subjectMorphologyen_US
dc.subjectNanocrystalline materialsen_US
dc.subjectNanorodsen_US
dc.subjectOxygenen_US
dc.subjectOxygen evolution reactionen_US
dc.subjectPrecious metalsen_US
dc.subjectReaction kineticsen_US
dc.subjectSulfur compoundsen_US
dc.subjectX ray photoelectron spectroscopyen_US
dc.subjectAttenuated total reflectance Fourier transform infrareden_US
dc.subjectBasic conditionsen_US
dc.subjectComposite nano rodsen_US
dc.subjectDecomposition approachen_US
dc.subjectDithiocarbamatesen_US
dc.subjectElectron transport chainen_US
dc.subjectMolecular precursoren_US
dc.subjectOxygen evolution reaction (oer)en_US
dc.subjectCopper compoundsen_US
dc.titleInterfacial Engineering of CuCo2S4/g-C3N4Hybrid Nanorods for Efficient Oxygen Evolution Reactionen_US
dc.title.journalInorganic Chemistryen_US
dc.typeArticleen_US
dc.type.accesstypeClosed Accessen_US

Files