Existence of solutions by fixed point theorem of general delay fractional differential equation with p-Laplacian operator

dc.contributor.authorKaushik, Kirti
dc.contributor.authorKumar, Anoop
dc.contributor.authorKhan, Aziz
dc.contributor.authorAbdeljawad, Thabet
dc.date.accessioned2024-01-21T10:35:47Z
dc.date.accessioned2024-08-13T11:17:04Z
dc.date.available2024-01-21T10:35:47Z
dc.date.available2024-08-13T11:17:04Z
dc.date.issued2023-02-27T00:00:00
dc.description.abstractIn this manuscript, the main objective is to analyze the existence, uniqueness,(EU) and stability of positive solution for a general class of non-linear fractional differential equation (FDE) with fractional differential and fractional integral boundary conditions utilizing ?p-Laplacian operator. To continue, we will apply Green�s function to determine the suggested FDE�s equivalent integral form. The Guo-Krasnosel�skii fixed point theorem and the properties of the p-Laplacian operator are utilized to derive the existence results. Hyers-Ulam (HU) stability is additionally evaluated. Further, an application is presented to validate the effectiveness of the result. � 2023 the Author(s), licensee AIMS Press.en_US
dc.identifier.doi10.3934/math.2023514
dc.identifier.issn24736988
dc.identifier.urihttp://10.2.3.109/handle/32116/3435
dc.identifier.urlhttp://www.aimspress.com/article/doi/10.3934/math.2023514
dc.language.isoen_USen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.subjectCaputo�s derivativeen_US
dc.subjectfixed point theoremsen_US
dc.subjectGreen�s functionen_US
dc.subjectHyres-Ulam stabilityen_US
dc.subjectRiemann-Liouville integralen_US
dc.titleExistence of solutions by fixed point theorem of general delay fractional differential equation with p-Laplacian operatoren_US
dc.title.journalAIMS Mathematicsen_US
dc.typeArticleen_US
dc.type.accesstypeClosed Accessen_US

Files