On the rigidity of spherically symmetric Finsler metrics with isotropic E-curvature
dc.contributor.author | Rani, S. | |
dc.contributor.author | Shanker, G. | |
dc.date.accessioned | 2024-01-21T10:35:28Z | |
dc.date.accessioned | 2024-08-13T11:17:10Z | |
dc.date.available | 2024-01-21T10:35:28Z | |
dc.date.available | 2024-08-13T11:17:10Z | |
dc.date.issued | 2021-01-01T00:00:00 | |
dc.description.abstract | In the current paper, first we establish the formula for mean Berwald curvature of a spherically symmetric Finsler metric. Further, we establish differential equations characterizing projectively flat as well as dually flat spherically symmetric Finsler metrics. Finally, we obtain a rigidity result on spherically symmetric Finsler metrics with isotropic E-curvature. � Balkan Society of Geometers, Geometry Balkan Press 2021. | en_US |
dc.identifier.issn | 14545101 | |
dc.identifier.uri | https://kr.cup.edu.in/handle/32116/3332 | |
dc.identifier.url | http://www.mathem.pub.ro/apps/v23/A23-ra-ZAH91.pdf | |
dc.language.iso | en_US | en_US |
dc.publisher | Balkan Society of Geometers | en_US |
dc.subject | dually flat | en_US |
dc.subject | isotropic E-curvature | en_US |
dc.subject | projectively flat | en_US |
dc.subject | rigidity | en_US |
dc.subject | Spherically symmetric Finsler metric | en_US |
dc.title | On the rigidity of spherically symmetric Finsler metrics with isotropic E-curvature | en_US |
dc.title.journal | Applied Sciences | en_US |
dc.type | Article | en_US |
dc.type.accesstype | Closed Access | en_US |