Highly stable supercapacitive performance of one-dimensional (1D) brookite TiO2 nanoneedles
dc.contributor.author | Devan, R.S. | |
dc.contributor.author | Ma, Y.-R. | |
dc.contributor.author | Patil, R.A. | |
dc.contributor.author | Lukas, S.-M. | |
dc.date.accessioned | 2018-07-14T01:18:50Z | |
dc.date.accessioned | 2024-08-13T12:45:48Z | |
dc.date.available | 2018-07-14T01:18:50Z | |
dc.date.available | 2024-08-13T12:45:48Z | |
dc.date.issued | 2016 | |
dc.description.abstract | We report the highly stable supercapacitive performance of one-dimensional (1D) nanoneedles of brookite (?) TiO2 synthesized on a conducting glass substrate. The 1D ?-TiO2 nanoneedles synthesized over a large area array utilizing hot-filament metal vapor deposition (HFMVD) were ?24-26 nm wide, ?650 nm long and tapered in a downward direction. X-ray photoemission spectroscopy (XPS) revealed their chemical properties and stoichiometric Ti and O composition. The 1D ?-TiO2 nanoneedles execute as parallel units for charge storage, yielding a specific capacitance of 34.1 mF g-1. Electrochemical impedance spectroscopy revealed that the large surface area and brookite crystalline nature of the 1D nanoneedles provided easy access to Na+ ions, and resulted in low diffusion resistance, playing a key role in their stable charging-discharging electrochemical mechanism. Moreover, the non-faradic mechanism of these nanoneedles delivered better durability and high stability up to 10000 cycles, and a columbic efficiency of 98%. Therefore, 1D ?-TiO2 nanoneedles hold potential as an electrode material for highly stable supercapacitive performance with long cycle lifetime. ? 2016 The Royal Society of Chemistry. | en_US |
dc.identifier.citation | Devan, R. S., Ma, Y. R., Patil, R. A., & Lukas, S. M. (2016). Highly stable supercapacitive performance of one-dimensional (1D) brookite TiO<inf>2</inf>nanoneedles. Rsc Advances, 6(67), 6218-6225. doi: 10.1039/c6ra11348f | en_US |
dc.identifier.doi | 10.1039/c6ra11348f | |
dc.identifier.issn | 20462069 | |
dc.identifier.uri | https://kr.cup.edu.in/handle/32116/1358 | |
dc.identifier.url | http://pubs.rsc.org/en/Content/ArticleLanding/2018/CP/C8CP00318A#!divAbstract | |
dc.language.iso | en | en_US |
dc.publisher | Royal Society of Chemistry | en_US |
dc.subject | Capacitance | en_US |
dc.subject | Electrochemical impedance spectroscopy | en_US |
dc.subject | Nanoneedles | en_US |
dc.subject | Photoelectron spectroscopy | en_US |
dc.subject | Substrates | en_US |
dc.subject | Titanium | en_US |
dc.subject | Columbic efficiency | en_US |
dc.subject | Crystalline nature | en_US |
dc.subject | Diffusion resistance | en_US |
dc.subject | Electrochemical mechanisms | en_US |
dc.subject | Electrode material | en_US |
dc.subject | Large surface area | en_US |
dc.subject | Specific capacitance | en_US |
dc.subject | X ray photoemission spectroscopy | en_US |
dc.subject | Titanium dioxide | en_US |
dc.title | Highly stable supercapacitive performance of one-dimensional (1D) brookite TiO2 nanoneedles | en_US |
dc.title.journal | RSC Advances | |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1