Ag-S Type Quantum Dots versus Superatom Nanocatalyst: A Single Sulfur Atom Modulated Decarboxylative Radical Cascade Reaction

dc.contributor.authorMeena, Sangeeta
dc.contributor.authorDastider, Saptarshi G.
dc.contributor.authorNishad, Chandra Shekhar
dc.contributor.authorJangid, Dilip Kumar
dc.contributor.authorKumar, Pankaj
dc.contributor.authorKhirid, Samreet
dc.contributor.authorBose, Shubhankar Kumar
dc.contributor.authorMondal, Krishnakanta
dc.contributor.authorBanerjee, Biplab
dc.contributor.authorDhayal, Rajendra S.
dc.date.accessioned2024-01-21T10:33:07Z
dc.date.accessioned2024-08-13T11:16:20Z
dc.date.available2024-01-21T10:33:07Z
dc.date.available2024-08-13T11:16:20Z
dc.date.issued2023-04-06T00:00:00
dc.description.abstractThe preparation of high-nuclearity silver nanoclusters in quantitative yield remains exclusive and their potential applications in the catalysis of organic reactions are still undeveloped. Here, we have synthesized a quantum dot (QD)-based catalyst, [Ag62S13(SBut)32](PF6)4 (denoted as Ag62S12-S) in excellent yield that enables the direct synthesis of pharmaceutically precious 3,4-dihydroquinolinone in 92% via a decarboxylative radical cascade reaction of cinnamamide with ?-oxocarboxylic acid under mild reaction conditions. In comparison, a superatom [Ag62S12(SBut)32](PF6)2 (denoted as Ag62S12) with identical surface anatomy and size, but without a central S2- atom in the core, gives an improved yield (95%) in a short time and exhibits higher reactivity. Multiple characterization techniques (single-crystal X-ray diffraction, nuclear magnetic resonance (1H and 31P), electrospray ionization mass spectrometry, energy dispersive X-ray spectroscopy, Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis) confirm the formation of Ag62S12-S. The BET results expose the total active surface area in supporting a single e- transfer reaction mechanism. Density functional theory reveals that leaving the central S atom of Ag62S12-S leads to higher charge transfer from Ag62S12 to the reactant, accelerates the decarboxylation process, and correlates the catalytic properties with the structure of the nanocatalyst. � 2023 American Chemical Society.en_US
dc.identifier.doi10.1021/acs.inorgchem.3c00070
dc.identifier.issn201669
dc.identifier.urihttp://10.2.3.109/handle/32116/3271
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.3c00070
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectAtomsen_US
dc.subjectCarboxylationen_US
dc.subjectCrystal atomic structureen_US
dc.subjectDensity functional theoryen_US
dc.subjectElectrodepositionen_US
dc.subjectElectrospray ionizationen_US
dc.subjectEnergy dispersive spectroscopyen_US
dc.subjectFourier transform infrared spectroscopyen_US
dc.subjectHigh resolution transmission electron microscopyen_US
dc.subjectLigandsen_US
dc.subjectMass spectrometryen_US
dc.subjectNanocatalystsen_US
dc.subjectNanocrystalsen_US
dc.subjectNuclear magnetic resonance spectroscopyen_US
dc.subjectSilver compoundsen_US
dc.subjectSingle crystalsen_US
dc.subjectSulfuren_US
dc.subjectThermogravimetric analysisen_US
dc.subjectX ray photoelectron spectroscopyen_US
dc.subjectBrunauer emmett tellersen_US
dc.subjectNano-catalysten_US
dc.subjectNuclearityen_US
dc.subjectOrganic reactionen_US
dc.subjectQuantitative yieldsen_US
dc.subjectRadical cascade reactionsen_US
dc.subjectSilver nanoclustersen_US
dc.subjectSulphur atomsen_US
dc.subjectSuperatomsen_US
dc.subjectSynthesiseden_US
dc.subjectSemiconductor quantum dotsen_US
dc.titleAg-S Type Quantum Dots versus Superatom Nanocatalyst: A Single Sulfur Atom Modulated Decarboxylative Radical Cascade Reactionen_US
dc.title.journalInorganic Chemistryen_US
dc.typeArticleen_US
dc.type.accesstypeClosed Accessen_US

Files