Porous nanorods by stacked NiO nanoparticulate exhibiting corn-like structure for sustainable environmental and energy applications

dc.contributor.authorManjunath, Vishesh
dc.contributor.authorBimli, Santosh
dc.contributor.authorSingh, Diwakar
dc.contributor.authorBiswas, Rathindranath
dc.contributor.authorDidwal, Pravin N.
dc.contributor.authorHaldar, Krishna Kanta
dc.contributor.authorDeshpande, Nishad G.
dc.contributor.authorBhobe, Preeti A.
dc.contributor.authorDevan, Rupesh S.
dc.date.accessioned2024-01-21T10:33:10Z
dc.date.accessioned2024-08-13T11:16:21Z
dc.date.available2024-01-21T10:33:10Z
dc.date.available2024-08-13T11:16:21Z
dc.date.issued2023-07-20T00:00:00
dc.description.abstractA porous 1D nanostructure provides much shorter electron transport pathways, thereby helping to improve the life cycle of the device and overcome poor ionic and electronic conductivity, interfacial impedance between electrode-electrolyte interface, and low volumetric energy density. In view of this, we report on the feasibility of 1D porous NiO nanorods comprising interlocked NiO nanoparticles as an active electrode for capturing greenhouse CO2, effective supercapacitors, and efficient electrocatalytic water-splitting applications. The nanorods with a size less than 100 nm were formed by stacking cubic crystalline NiO nanoparticles with dimensions less than 10 nm, providing the necessary porosity. The existence of Ni2+ and its octahedral coordination with O2? is corroborated by XPS and EXAFS. The SAXS profile and BET analysis showed 84.731 m2 g?1 surface area for the porous NiO nanorods. The NiO nanorods provided significant surface-area and the active-surface-sites thus yielded a CO2 uptake of 63 mmol g?1 at 273 K via physisorption, a specific-capacitance (CS) of 368 F g?1, along with a retention of 76.84% after 2500 cycles, and worthy electrocatalytic water splitting with an overpotential of 345 and 441 mV for HER and OER activities, respectively. Therefore, the porous 1D NiO as an active electrode shows multifunctionality toward sustainable environmental and energy applications. � 2023 The Royal Society of Chemistry.en_US
dc.identifier.doi10.1039/d3ra03209d
dc.identifier.issn20462069
dc.identifier.urihttp://10.2.3.109/handle/32116/3281
dc.identifier.urlhttp://xlink.rsc.org/?DOI=D3RA03209D
dc.language.isoen_USen_US
dc.publisherRoyal Society of Chemistryen_US
dc.subjectCarbon dioxideen_US
dc.subjectElectrodesen_US
dc.subjectElectrolytesen_US
dc.subjectElectron transport propertiesen_US
dc.subjectLife cycleen_US
dc.subjectNanoparticlesen_US
dc.subjectNickel oxideen_US
dc.subjectSustainable developmenten_US
dc.subject1D nanostructuresen_US
dc.subjectActive electrodesen_US
dc.subjectElectrocatalyticen_US
dc.subjectElectron transporten_US
dc.subjectEnergy applicationsen_US
dc.subjectEnvironmental applicationsen_US
dc.subjectNano particulatesen_US
dc.subjectNiO nanoparticlesen_US
dc.subjectSurface areaen_US
dc.subjectWater splittingen_US
dc.subjectNanorodsen_US
dc.titlePorous nanorods by stacked NiO nanoparticulate exhibiting corn-like structure for sustainable environmental and energy applicationsen_US
dc.title.journalRSC Advancesen_US
dc.typeArticleen_US
dc.type.accesstypeOpen Accessen_US

Files