Ab Initio Modeling of the ZnO-Cu(111) Interface

dc.contributor.authorMondal, Krishnakanta
dc.contributor.authorMegha
dc.contributor.authorBanerjee, Arup
dc.contributor.authorFortunelli, Alessandro
dc.contributor.authorWalter, Michael
dc.contributor.authorMoseler, Michael
dc.date.accessioned2024-01-21T10:42:38Z
dc.date.accessioned2024-08-13T12:44:40Z
dc.date.available2024-01-21T10:42:38Z
dc.date.available2024-08-13T12:44:40Z
dc.date.issued2021-12-31T00:00:00
dc.description.abstractThe morphology at the catalytically active interfacial site of ZnO/Cu in the commercial ZnO/Cu/Al2O3 catalyst for CO2 hydrogenation to methanol is still an open question. In the present study, we employ ab initio density functional theory based methods to gain insight into the structure of the ZnO-Cu interface by investigating the morphology of supported ZnO nano-ribbons at the interface with the Cu(111) surface in the presence of hydrogen and water molecules. We find that the stabilities of free-standing ZnO nano-ribbons get enhanced when they are supported on the Cu(111) surface. These supported nano-ribbons are further stabilized by the adsorption of hydrogen atoms on the top of O atoms of the nano-ribbons. Interestingly, the hydrogenated nano-ribbons are found to be equally stable and they appear to be an array of independent chains of ZnOH motifs, suggesting that the hydrogenated nano-ribbons are structurally fluxional. The edge of these fluxional nano-ribbons is stabilized via a triangular reconstruction with a basic composition of Zn6O7H7 in the presence of water molecules. Such a triangular structure gets further stabilized when it is attached to a bulk-like part of the ZnO/Cu(111) system. Furthermore, we find that the triangular reconstruction is energetically favorable even at the methanol synthesis conditions. Therefore, we propose that, under methanol synthesis conditions, the motif Zn6O7H7 represents a stable form at the interface between the bulk-like part of ZnO and the Cu(111) surface in the ZnO/Cu/Al2O3 based commercial catalyst. � 2021 American Chemical Societyen_US
dc.identifier.doi10.1021/acs.jpcc.1c09170
dc.identifier.issn19327447
dc.identifier.urihttp://10.2.3.109/handle/32116/3697
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c09170
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectAluminum compoundsen_US
dc.subjectAtomsen_US
dc.subjectCatalyst activityen_US
dc.subjectCopperen_US
dc.subjectDensity functional theoryen_US
dc.subjectGas adsorptionen_US
dc.subjectHydrogenen_US
dc.subjectHydrogenationen_US
dc.subjectMethanolen_US
dc.subjectMoleculesen_US
dc.subjectSynthesis gas manufactureen_US
dc.subjectZinc oxideen_US
dc.subjectAb initioen_US
dc.subjectAb initio modellingen_US
dc.subjectBulk-likeen_US
dc.subjectCO2 hydrogenationen_US
dc.subjectCu/Al2O3en_US
dc.subjectInterfacial sitesen_US
dc.subjectMethanol synthesisen_US
dc.subjectSynthesis conditionsen_US
dc.subjectWater moleculeen_US
dc.subject]+ catalysten_US
dc.subjectII-VI semiconductorsen_US
dc.titleAb Initio Modeling of the ZnO-Cu(111) Interfaceen_US
dc.title.journalJournal of Physical Chemistry Cen_US
dc.typeArticleen_US
dc.type.accesstypeClosed Accessen_US

Files