Landslide Susceptibility Mapping of Tehri Reservoir Region Using Geospatial Approach
No Thumbnail Available
Date
2023-03-10T00:00:00
Journal Title
Journal ISSN
Volume Title
Publisher
Springer International Publishing
Abstract
Uttarakhand is one of the most landslide-susceptible states because of its geographical setting, which consists of 86% of the Himalayan terrain. However, in recent years, landslides have increased dramatically due to the large number of settlements, farms, road buildings, and a wide variety of hydroelectric projects. Therefore, this is a need to study the landslides scrupulously at a regional scale to rein the future developmental planning models. In the current work, a comprehensive study has been undertaken for the assessment of landslide susceptibility zones using the weight of evidence (WOE) and risk assessment for the Tehri region, specifically around the Tehri reservoir. Landslides are derived through remotesensing techniques and other sources such as slope, geology, aspect, geomorphology, land use/land cover, drainage, lineaments, and more. After that, the WOE method is applied to integrate causative factors for the mapping of susceptible landslide zones, where the weights have been assigned to each layer according to available literatures. Subsequently, vulnerability is prepared for the area by integrating layers through the weighted sum technique. Finally, a risk map was prepared by integrating a susceptibility and vulnerability map. All three maps, namely, vulnerability, landslide susceptibility, and risk maps, were classified into five zones: very low, low, moderate, high, and very high. The results obtained from final maps and plots indicate that approximately 8% of the area is in a high susceptible zone, 50% is in a moderate susceptible zone, 54% is in a very low-risk zone, 23% is in a moderaterisk zone, and 14% is in a very high-risk zone. This study identified and illustrated the causative factors, combined into a GIS environment to identify landslide-prone locations. Then, depending upon the potency of an element, suitable and effective preventive measures may be taken to reduce the impact of the disaster. The concerned government agencies can use the same map while mapping disaster management, developing future strategies, implementing rehabilitation programs, and environmental planning. � The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.
Description
Keywords
GIS, Landslide Hazard Zonation, Remote Sensing, Tehri Reservoir, Weights