Polarization-independent enhancement in UV photoconductivity of BiFeO3/Sn:In2O3 heterostructure

No Thumbnail Available

Date

2023-05-08T00:00:00

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier B.V.

Abstract

Currently, polarization-dependent transport in ferroelectric materials under optical illumination is gaining a lot of attention in optoelectronics. This idea is implemented on BiFeO3 to illustrate its UV�Visible light photodetection property, however, naturally occurring bismuth or oxygen vacancies serve a major disadvantage as they interfere with its polarization ability. It is very difficult to overcome this defect issue in bismuth-based perovskites, therefore, based on this herein an enhancement in the photoconductive property of polycrystalline BiFeO3 thin film deposited via spray pyrolysis technique on Sn:In2O3 coated glass substrate is demonstrated without polarizing it. An extraordinary photodetection behavior with higher photoresponsivity (1.01 A/W) and external quantum efficiency (364) as well as faster response speed (6 ms) even under low UV illumination (340 nm) and lower applied bias of 2 V is observed. The roles of the BiFeO3�Sn:In2O3 interface, as well as the adsorption/desorption of oxygen molecules on the surface of BiFeO3 layers, were highlighted for the ferroelectric material's UV photodetector application. � 2023 Elsevier B.V.

Description

Keywords

BiFeO<sub>3</sub>, Chemisorptions, p-n junction, Photodetector, Polarization-independent

Citation

Endorsement

Review

Supplemented By

Referenced By