Decabromodiphenyl ether (BDE-209) exposure to lactating mice perturbs steroidogenesis and spermatogenesis in adult male offspring

No Thumbnail Available

Date

2020-12-29T00:00:00

Journal Title

Journal ISSN

Volume Title

Publisher

Academic Press

Abstract

Decabromodiphenyl ether (BDE-209) is widely used as a flame retardant in many products like electronic equipments, plastics, furniture and textiles. BDE-209, a thyroid hormones (THs)-disrupting chemical, affects male reproductive health through altered THs status in mouse model. The present study was designed in continuation to our earlier work to elucidate whether early life exposure to BDE-209 has a long term potential risk to male reproductive health. This study, therefore, aimed to evaluate the effect of maternal BDE-209 exposure during lactation and to elucidate possible mechanism(s) of its action on male reproduction in adult Parkes mice offspring. Lactating female Parkes mice were orally gavaged with 500, and 700 mg/kg body weight of BDE-209 in corn oil from postnatal day (PND) 1 to PND 28 along with 6-propyl-2-thiouracil (PTU)-treated positive controls and vehicle-treated controls. Male pups of lactating dams were euthanized at PND 75. Maternal BDE-209 exposure during lactation markedly affected histoarchitecture of testis and testosterone production with concomitant down-regulation in the expression of various steroidogenic markers in adult offspring. Maternal exposure to BDE-209 during lactation also interfered with germ cell dynamics and oxidative status in testes of adult mice offspring. A decreased expression of connexin 43 and androgen receptor was also evident in testes of these mice offspring; further, number, motility and viability of spermatozoa were also adversely affected in these mice. The results thus provide evidences that maternal exposure to BDE-209 during lactation causes reproductive toxicity in adult mice offspring. � 2020 The Authors

Description

Keywords

BDE-209, Oxidative stress, Spermatogenesis, Steroidogenesis, Testis

Citation

Endorsement

Review

Supplemented By

Referenced By