Janus ?-PdXY (X/Y = S, Se, Te) materials with high anisotropic thermoelectric performance

dc.contributor.authorJakhar, Mukesh
dc.contributor.authorSharma, Raman
dc.contributor.authorKumar, Ashok
dc.date.accessioned2024-01-21T10:42:49Z
dc.date.accessioned2024-08-13T12:44:53Z
dc.date.available2024-01-21T10:42:49Z
dc.date.available2024-08-13T12:44:53Z
dc.date.issued2023-02-21T00:00:00
dc.description.abstractTwo-dimensional (2D) materials have garnered considerable attention as emerging thermoelectric (TE) materials owing to their unique density of states (DOS) near the Fermi level. We investigate the TE performance of Janus ?-PdXY (X/Y = S, Se, Te) monolayer materials as a function of carrier concentration and temperature in the mid-range from 300 to 800 K by combining density functional theory (DFT) and semi-classical Boltzmann transport theory. The phonon dispersion spectra and AIMD simulations confirm their thermal and dynamic stability. The transport calculation results reveal the highly anisotropic TE performance of both n and p-type Janus ?-PdXY monolayers. Meanwhile, the coexistence of low phonon group velocity and a converged scattering rate leads to a lower lattice thermal conductivity (Kl) of 0.80 W mK?1, 0.94 W mK?1, and 0.77 W mK?1 along the y-direction for these Janus materials, while the high TE power factor is attributed to the high Seebeck coefficient (S) and electrical conductivity, which are due to the degenerate top valence bands of these Janus monolayers. The combination of lower Kl and a high-power factor at 300 K (800 K) leads to an optimal figure of merit (ZT) of 0.68 (2.21), 0.86 (4.09) and 0.68 (3.63) for p-type Janus PdSSe, PdSeTe and PdSTe monolayers, respectively. To evaluate rational electron transport properties, the effects of acoustic phonon scattering (?ac), impurity scattering (?imp), and polarized phonon scattering (?polar) are included in the temperature-dependent electron relaxation time. These findings indicated that the Janus ?-PdXY monolayers are promising candidates for TE conversion devices. � 2023 The Royal Society of Chemistry.en_US
dc.identifier.doi10.1039/d2nr05483c
dc.identifier.issn20403364
dc.identifier.urihttp://10.2.3.109/handle/32116/3748
dc.identifier.urlhttp://xlink.rsc.org/?DOI=D2NR05483C
dc.language.isoen_USen_US
dc.publisherRoyal Society of Chemistryen_US
dc.subjectAnisotropyen_US
dc.subjectCarrier concentrationen_US
dc.subjectDensity functional theoryen_US
dc.subjectElectric power factoren_US
dc.subjectElectron transport propertiesen_US
dc.subjectPhononsen_US
dc.subjectSelenium compoundsen_US
dc.subjectStatistical mechanicsen_US
dc.subjectTellurium compoundsen_US
dc.subjectThermal conductivityen_US
dc.subjectThermoelectricityen_US
dc.subjectBoltzmann transport theoryen_US
dc.subjectDensities of stateen_US
dc.subjectDensity-functional-theoryen_US
dc.subjectDispersion spectraen_US
dc.subjectP-typeen_US
dc.subjectPhonon dispersionsen_US
dc.subjectThermo-Electric materialsen_US
dc.subjectThermoelectric materialen_US
dc.subjectThermoelectric performanceen_US
dc.subjectTwo-dimensionalen_US
dc.subjectarticleen_US
dc.subjectdensity functional theoryen_US
dc.subjectelectric conductivityen_US
dc.subjectelectron transporten_US
dc.subjectphononen_US
dc.subjectrelaxation timeen_US
dc.subjectsimulationen_US
dc.subjectthermal conductivityen_US
dc.subjectMonolayersen_US
dc.titleJanus ?-PdXY (X/Y = S, Se, Te) materials with high anisotropic thermoelectric performanceen_US
dc.title.journalNanoscaleen_US
dc.typeArticleen_US
dc.type.accesstypeOpen Accessen_US

Files