Europium Molybdate/Molybdenum Disulfide Nanostructures with Efficient Electrocatalytic Activity for the Hydrogen Evolution Reaction

dc.contributor.authorGhosh, Debarati
dc.contributor.authorGhosal Chowdhury, Monojit
dc.contributor.authorBiswas, Rathindranath
dc.contributor.authorHaldar, Krishna Kanta
dc.contributor.authorPatra, Amitava
dc.date.accessioned2024-01-21T10:33:08Z
dc.date.accessioned2024-08-13T11:16:20Z
dc.date.available2024-01-21T10:33:08Z
dc.date.available2024-08-13T11:16:20Z
dc.date.issued2023-04-26T00:00:00
dc.description.abstractThe design of hybrid nanostructures of molybdenum disulfide (MoS2) has been extensively explored as potent electrocatalysts for hydrogen generation reactions. Here, we report the in situ synthesis of a nanocomposite containing europium molybdate [Eu2(MoO4)3] and molybdenum disulfide (MoS2) for an enhanced electrochemical hydrogen evolution reaction (HER). The characteristic X-ray diffraction (XRD) peaks of both 2H-MoS2 and ?-Eu2(MoO4)3 confirm the formation of the nanocomposite. The nanoflower (NF) architecture of MoS2 coupled with flakes of europium molybdate is observed in the transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images, which lead to an enhanced surface area of the nanocomposite. Raman and X-ray photoelectron spectroscopy (XPS) studies reveal a variation in the layer thickness of MoS2 and a significant interfacial electronic interaction between Eu2(MoO4)3 and MoS2. As evident from the small onset potential of ?0.05 V vs reversible hydrogen electrode (RHE) and a lower overpotential value of 186 mV (at a current density of 10 mA/cm2), the nanocomposite outperforms pristine MoS2 nanoflowers in terms of electrocatalytic HER. The charge-transfer resistance of the nanocomposite (80.02 ?) is significantly low compared to pristine MoS2 (158.37 ?), thus confirming the enhanced interfacial charge transfer. The Tafel slope value of the nanocomposite (189 mV/dec) is notably less than that of pristine MoS2 (313 mV/dec), indicating the enhanced HER activity of the nanocomposite. The fabrication of lanthanide-containing MoS2 nanocomposites appears to be promising for an efficient electrocatalytic activity for the hydrogen evolution reaction. � 2023 American Chemical Societyen_US
dc.identifier.doi10.1021/acsanm.3c00297
dc.identifier.issn25740970
dc.identifier.urihttps://kr.cup.edu.in/handle/32116/3273
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acsanm.3c00297
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectcharge transferen_US
dc.subjectelectrocatalysisen_US
dc.subjecteuropium molybdateen_US
dc.subjecthydrogen evolution reactionen_US
dc.subjectmolybdenum disulfideen_US
dc.titleEuropium Molybdate/Molybdenum Disulfide Nanostructures with Efficient Electrocatalytic Activity for the Hydrogen Evolution Reactionen_US
dc.title.journalACS Applied Nano Materialsen_US
dc.typeArticleen_US
dc.type.accesstypeClosed Accessen_US

Files