Prediction studies of the epidemic peak of coronavirus disease in Japan: From Caputo derivatives to Atangana-Baleanu derivatives
No Thumbnail Available
Date
2021-09-30T00:00:00
Journal Title
Journal ISSN
Volume Title
Publisher
World Scientific
Abstract
New atypical pneumonia caused by a virus called Coronavirus (COVID-19) appeared in Wuhan, China in December 2019. Unlike previous epidemics due to the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome coronavirus (MERS-CoV), COVID-19 has the particularity that it is more contagious than the other previous ones. In this paper, we try to predict the COVID-19 epidemic peak in Japan with the help of real-time data from January 15 to February 29, 2020 with the uses of fractional derivatives, namely, Caputo derivatives, the Caputo-Fabrizio derivatives, and Atangana-Baleanu derivatives in the Caputo sense. The fixed point theory and Picard-Lindel of approach used in this study provide the proof for the existence and uniqueness analysis of the solutions to the noninteger-order models under the investigations. For each fractional model, we propose a numerical scheme as well as prove its stability. Using parameter values estimated from the Japan COVID-19 epidemic real data, we perform numerical simulations to confirm the effectiveness of used approximation methods by numerical simulations for different values of the fractional-order ?, and to give the predictions of COVID-19 epidemic peaks in Japan in a specific range of time intervals. � 2022 World Scientific Publishing Company.
Description
Keywords
Atangana-Baleanu derivative (ABC), Caputo derivative, Caputo-Fabrizio derivative (CF), COVID-19, mathematical model