Synthesis, phase confirmation and electrical properties of (1 ? x)KNNS?xBNZSH lead-free ceramics

dc.contributor.authorKumar, Amit
dc.contributor.authorKumari, Sapna
dc.contributor.authorKumar, V.
dc.contributor.authorKumar, Prashant
dc.contributor.authorThakur, Vikas N.
dc.contributor.authorKumar, Ashok
dc.contributor.authorGoyal, P.K.
dc.contributor.authorArya, Anil
dc.contributor.authorSharma, A.L.
dc.date.accessioned2024-01-21T10:42:39Z
dc.date.accessioned2024-08-13T12:44:41Z
dc.date.available2024-01-21T10:42:39Z
dc.date.available2024-08-13T12:44:41Z
dc.date.issued2022-02-02T00:00:00
dc.description.abstractIn the present work, lead-free piezoelectric ceramics (Rx)(K0.5Na0.5)(Nb0.96Sb0.04O3)?x(Bi0.5Na0.5)(Zr0.8Sn0.1Hf0.1)O3 [abb. as (Rx)KNNS?xBNZSH, 0 ? x ? 0.04] were prepared via solid-state sintering technique. The thermal behavior of mixed powders has been investigated for x = 0, 0.02, and 0.04 using TGA-DSC analysis to estimate the calcination temperature. The structural, morphological, dielectric, ferroelectric and piezoelectric properties are analyzed through the appropriate characterization techniques. The X-ray diffraction (XRD) patterns demonstrate a pure perovskite phase structure for all the sintered samples. Further, the coexistence of rhombohedral to orthorhombic (R-O) phase is observed in ceramic sample with x = 0.02. The morphology of all the sintered samples exhibits an inhomogeneous, dense microstructure with the rectangular grain, while for x = 0.02, a relatively homogeneous distribution of grains is observed. BNZSH doping decreases the average grain size from 2.22 to 0.33�?m for x = 0 to x = 0.04, respectively. Owing to the presence of multiple-phase coexistence as well as the improved microstructure and enhanced dielectric properties (dielectric constant ?r = 1080, ?max = 5301; Curie temperature - TC ~ 317��C; dielectric loss - tan? ~ 6%) the ceramics with x = 0.02 has been found to have a large piezoelectric coefficient (d33) of ~180 pC/N, remnant polarization (Pr) ~ 16.7 �C/cm2 and coercive field (Ec) ~ 10.7�kV/cm. We believe it will expand the range of applications for KNN-based ceramics. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.en_US
dc.identifier.doi10.1007/s10854-022-07798-6
dc.identifier.issn9574522
dc.identifier.urihttps://kr.cup.edu.in/handle/32116/3701
dc.identifier.urlhttps://link.springer.com/10.1007/s10854-022-07798-6
dc.language.isoen_USen_US
dc.publisherSpringeren_US
dc.subjectMorphologyen_US
dc.subjectPerovskiteen_US
dc.subjectPhase structureen_US
dc.subjectPiezoelectric ceramicsen_US
dc.subjectPiezoelectricityen_US
dc.subjectSinteringen_US
dc.subjectCalcination temperatureen_US
dc.subjectDielectrics propertyen_US
dc.subjectLead free ceramicsen_US
dc.subjectLead-free piezoelectric ceramicen_US
dc.subjectMixed powderen_US
dc.subjectSintered samplesen_US
dc.subjectSolid state sinteringen_US
dc.subjectSynthesis phaseen_US
dc.subjectTga-dscen_US
dc.subjectThermal behavioursen_US
dc.subjectDielectric lossesen_US
dc.titleSynthesis, phase confirmation and electrical properties of (1 ? x)KNNS?xBNZSH lead-free ceramicsen_US
dc.title.journalJournal of Materials Science: Materials in Electronicsen_US
dc.typeArticleen_US
dc.type.accesstypeClosed Accessen_US

Files