DNA Origami-Templated Bimetallic Core-Shell Nanostructures for Enhanced Oxygen Evolution Reaction

dc.contributor.authorKaur, Gagandeep
dc.contributor.authorBiswas, Rathindranath
dc.contributor.authorHaldar, Krishna Kanta
dc.contributor.authorSen, Tapasi
dc.date.accessioned2024-01-21T10:33:00Z
dc.date.accessioned2024-08-13T11:16:43Z
dc.date.available2024-01-21T10:33:00Z
dc.date.available2024-08-13T11:16:43Z
dc.date.issued2022-04-15T00:00:00
dc.description.abstractHydrogen generation through electrocatalytic water splitting offers promising technology for sustainable and clean energy production as an alternative to conventional energy sources. The development of highly active electrocatalysts is of immense interest for improving the efficiency of gas evolution, which is strongly hindered due to the sluggish kinetics of oxygen evolution reaction (OER). Herein, we present the design of Ag-coated Au nanostar (core-shell-type Au@Ag nanostar) monomer structures assembled on rectangular DNA origami and study their electrocatalytic activities through OER, which remains unexplored. Our designed DNA origami-templated bimetallic nanostar catalyst showed excellent OER activity and high stability without using any external binder and exhibited a current density of 10 mA cm-2at a low overpotential of 266 mV, which was smaller than those of ss-DNA-functionalized Au@Ag nanostars and DNA origami-templated pure Au nanostars. Our results reveal that DNA origami-assembled core-shell Au@Ag nanostars show better electrocatalytic performance as compared to pure-core Au nanostars immobilized on DNA origami, owing to the presence of a highly conductive Ag layer. Such controlled assembly of bimetallic nanostructures on a DNA origami template can provide additional electrochemical surface area and a higher density of active sites resulting in enhanced electrocatalysis. � 2022 American Chemical Society. All rights reserved.en_US
dc.identifier.doi10.1021/acs.jpcc.2c00007
dc.identifier.issn19327447
dc.identifier.urihttp://10.2.3.109/handle/32116/3238
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c00007
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectCatalyst activityen_US
dc.subjectElectrocatalysisen_US
dc.subjectElectrocatalystsen_US
dc.subjectHydrogen productionen_US
dc.subjectNanocatalystsen_US
dc.subjectNanostructuresen_US
dc.subjectOxygenen_US
dc.subjectReaction kineticsen_US
dc.subjectShells (structures)en_US
dc.subjectAu nanostarsen_US
dc.subjectBimetallic coresen_US
dc.subjectCore shell nano structuresen_US
dc.subjectCore-shell nanostructuresen_US
dc.subjectElectrocatalyticen_US
dc.subjectHydrogen generationsen_US
dc.subjectNanostaren_US
dc.subjectSustainable energyen_US
dc.subjectTemplateden_US
dc.subjectWater splittingen_US
dc.subjectDNAen_US
dc.titleDNA Origami-Templated Bimetallic Core-Shell Nanostructures for Enhanced Oxygen Evolution Reactionen_US
dc.title.journalJournal of Physical Chemistry Cen_US
dc.typeArticleen_US
dc.type.accesstypeClosed Accessen_US

Files