Energy Evolution, Stabilization, and Mechanotransducer Properties of Fe3 O4 Vortex Nanorings and Nanodisks

dc.contributor.authorNiraula, Gopal
dc.contributor.authorToneto, Denilson
dc.contributor.authorJoshy, Elma
dc.contributor.authorCoaquira, Jose A. H.
dc.contributor.authorAyesh, Ahmad I.
dc.contributor.authorGarcia, Flavio
dc.contributor.authorMuraca, Diego
dc.contributor.authorDenardin, Juliano C.
dc.contributor.authorGoya, Gerardo F.
dc.contributor.authorSharma, Surender K.
dc.date.accessioned2024-01-21T10:42:31Z
dc.date.accessioned2024-08-13T12:44:34Z
dc.date.available2024-01-21T10:42:31Z
dc.date.available2024-08-13T12:44:34Z
dc.date.issued2021-08-02T00:00:00
dc.description.abstractRecent reports on spin structures produced in nanomaterials due to confinement of spins imposed by geometrical restrictions are at the center of rising scientific interest. Topological curling magnetic structures (vortices) exhibit unique properties, regarding the energy profile, good colloidal stability in suspensions, manipulation under a low-frequency magnetic field, and torque exertion. The last property provides the potential to mechanically eradicate cancer cells via magnetomechanical actuation using remote ac magnetic fields. Here, we study, theoretically and by micromagnetic simulations, the magnetic energy evolutions for vortex nanosystems, i.e., Fe3O4 nanodisks (NDs) and nanorings (NRs). The obtained results for magnetic energy, magnetic susceptibility, and magnetization reversal confirm that the vortex-domain structure in NRs exhibits better stability and avoids agglomeration in solution, owing to the presence of a central hole, whereas the presence of a vortex core in NDs induces magnetic remanence. Although NDs are found to exert slightly higher torques than NRs, this weakness can be compensated for by a small increase (i.e., approximately equals 20%) in the amplitude of the applied field. Our results provide evidence of the magnetic stability of the curling ground states in NRs and open the possibility of applying these systems to magnetomechanical actuation on single cells for therapeutics in biomedicine, such as cancer-cell destruction by low-frequency torque transduction. � 2021 American Physical Society.en_US
dc.identifier.doi10.1103/PhysRevApplied.16.024002
dc.identifier.issn23317019
dc.identifier.urihttp://10.2.3.109/handle/32116/3663
dc.identifier.urlhttps://link.aps.org/doi/10.1103/PhysRevApplied.16.024002
dc.language.isoen_USen_US
dc.publisherAmerican Physical Societyen_US
dc.subjectCellsen_US
dc.subjectDiseasesen_US
dc.subjectElectromagnetic fieldsen_US
dc.subjectGround stateen_US
dc.subjectIron oxidesen_US
dc.subjectMagnetic fieldsen_US
dc.subjectMagnetic susceptibilityen_US
dc.subjectMagnetiteen_US
dc.subjectMagnetization reversalen_US
dc.subjectNanoringsen_US
dc.subjectNanostructured materialsen_US
dc.subjectNanosystemsen_US
dc.subjectRemanenceen_US
dc.subjectSolsen_US
dc.subjectSuspensions (fluids)en_US
dc.subjectAC magnetic fieldsen_US
dc.subjectColloidal Stabilityen_US
dc.subjectLow frequency magnetic fieldsen_US
dc.subjectMagnetic remanenceen_US
dc.subjectMagnetic stabilityen_US
dc.subjectMagneto-mechanical actuationen_US
dc.subjectMicromagnetic simulationsen_US
dc.subjectVortex domain structuresen_US
dc.subjectVortex flowen_US
dc.titleEnergy Evolution, Stabilization, and Mechanotransducer Properties of Fe3 O4 Vortex Nanorings and Nanodisksen_US
dc.title.journalPhysical Review Applieden_US
dc.typeArticleen_US
dc.type.accesstypeOpen Accessen_US

Files