On the existence and uniqueness of a nonlinear q -difference boundary value problem of fractional order

dc.contributor.authorBekri, Zouaoui
dc.contributor.authorErturk, Vedat Suat
dc.contributor.authorKumar, Pushpendra
dc.date.accessioned2024-01-21T10:35:35Z
dc.date.accessioned2024-08-13T11:17:02Z
dc.date.available2024-01-21T10:35:35Z
dc.date.available2024-08-13T11:17:02Z
dc.date.issued2021-09-23T00:00:00
dc.description.abstractIn this research collection, we estimate the existence of the unique solution for the boundary value problem of nonlinear fractional q-difference equation having the given form cD q?v(t) - h(t,v(t))=0, 0 ? t ? 1, ?1v(0) + ?1Dqv(0)=v(?1),?2v(1) - ?2Dqv(1) = v(?2), where 1 < ? ? 2, (?1,?2) (0, 1)2, ?i,?i ?(i = 1, 2), h C([0, 1] � ?, ?) and cD q? represents the Caputo-type nonclassical q-derivative of order ?. We use well-known principal of Banach contraction, and Leray-Schauder nonlinear alternative to vindicate the unique solution existence of the given problem. Regarding the applications, some examples are solved to justify our outcomes. � 2022 World Scientific Publishing Company.en_US
dc.identifier.doi10.1142/S1793962322500118
dc.identifier.issn17939623
dc.identifier.urihttp://10.2.3.109/handle/32116/3373
dc.identifier.urlhttps://www.worldscientific.com/doi/abs/10.1142/S1793962322500118
dc.language.isoen_USen_US
dc.publisherWorld Scientificen_US
dc.subjectboundary value problemen_US
dc.subjectexistence and uniquenessen_US
dc.subjectFractional q -derivativeen_US
dc.subjectLeary-Schauder nonlinear alternativeen_US
dc.subjectprinciple of Banach contractionen_US
dc.titleOn the existence and uniqueness of a nonlinear q -difference boundary value problem of fractional orderen_US
dc.title.journalInternational Journal of Modeling, Simulation, and Scientific Computingen_US
dc.typeArticleen_US
dc.type.accesstypeClosed Accessen_US

Files