On S -curvature of a homogeneous Finsler space with square metric

dc.contributor.authorShanker G.
dc.contributor.authorRani S.
dc.date.accessioned2020-02-18T10:06:31Z
dc.date.accessioned2024-08-13T11:17:08Z
dc.date.available2020-02-18T10:06:31Z
dc.date.available2024-08-13T11:17:08Z
dc.date.issued2020
dc.description.abstractThe study of curvature properties of homogeneous Finsler spaces with (?,?)-metrics is one of the central problems in Riemann-Finsler geometry. In this paper, the existence of invariant vector fields on a homogeneous Finsler space with square metric is proved. Further, an explicit formula for S-curvature of a homogeneous Finsler space with square metric is established. Finally, using the formula of S-curvature, the mean Berwald curvature of aforesaid (?,?)-metric is calculated.en_US
dc.identifier.doi10.1142/S021988782050019X
dc.identifier.issn2198878
dc.identifier.urihttps://kr.cup.edu.in/handle/32116/2604
dc.identifier.urlhttps://www.worldscientific.com/doi/10.1142/S021988782050019X
dc.language.isoenen_US
dc.publisherWorld Scientific Publishing Co. Pte Ltden_US
dc.subjectHomogeneous Finsler spaceen_US
dc.subjectinvariant vector fielden_US
dc.subjectmean Berwald curvatureen_US
dc.subjectS -curvatureen_US
dc.subjectsquare metricen_US
dc.titleOn S -curvature of a homogeneous Finsler space with square metricen_US
dc.title.journalInternational Journal of Geometric Methods in Modern Physicsen_US
dc.typeArticleen_US
dc.type.accesstypeClosed Accessen_US

Files