On S -curvature of a homogeneous Finsler space with square metric
dc.contributor.author | Shanker G. | |
dc.contributor.author | Rani S. | |
dc.date.accessioned | 2020-02-18T10:06:31Z | |
dc.date.accessioned | 2024-08-13T11:17:08Z | |
dc.date.available | 2020-02-18T10:06:31Z | |
dc.date.available | 2024-08-13T11:17:08Z | |
dc.date.issued | 2020 | |
dc.description.abstract | The study of curvature properties of homogeneous Finsler spaces with (?,?)-metrics is one of the central problems in Riemann-Finsler geometry. In this paper, the existence of invariant vector fields on a homogeneous Finsler space with square metric is proved. Further, an explicit formula for S-curvature of a homogeneous Finsler space with square metric is established. Finally, using the formula of S-curvature, the mean Berwald curvature of aforesaid (?,?)-metric is calculated. | en_US |
dc.identifier.doi | 10.1142/S021988782050019X | |
dc.identifier.issn | 2198878 | |
dc.identifier.uri | https://kr.cup.edu.in/handle/32116/2604 | |
dc.identifier.url | https://www.worldscientific.com/doi/10.1142/S021988782050019X | |
dc.language.iso | en | en_US |
dc.publisher | World Scientific Publishing Co. Pte Ltd | en_US |
dc.subject | Homogeneous Finsler space | en_US |
dc.subject | invariant vector field | en_US |
dc.subject | mean Berwald curvature | en_US |
dc.subject | S -curvature | en_US |
dc.subject | square metric | en_US |
dc.title | On S -curvature of a homogeneous Finsler space with square metric | en_US |
dc.title.journal | International Journal of Geometric Methods in Modern Physics | en_US |
dc.type | Article | en_US |
dc.type.accesstype | Closed Access | en_US |