Noise Estimation Using Back Propagation Neural Networks
dc.contributor.author | Singh, D. | |
dc.contributor.author | Kaur, A. | |
dc.date.accessioned | 2024-01-21T10:48:38Z | |
dc.date.accessioned | 2024-08-14T05:05:58Z | |
dc.date.available | 2024-01-21T10:48:38Z | |
dc.date.available | 2024-08-14T05:05:58Z | |
dc.date.issued | 2022-04-29T00:00:00 | |
dc.description.abstract | In this paper, a new Backpropagation Neural Network-based noise estimation method is proposed to estimate Rician noise from MRI images. To train BNN features of MRI images such as, contrast, homogeneity, dissimilarity, asm, energy, entropy, meanx, meany, meanglcm, varx, vary, varglcm, correlation, skewx, skewy, skew, kurtosisx, kurtosisy, kurtosis etc are used. For training BNN, four hundred fifty images are used which are downloaded from Brain web. � The Electrochemical Society | en_US |
dc.identifier.doi | 10.1149/10701.18761ecst | |
dc.identifier.isbn | 9781607685395 | |
dc.identifier.issn | 19386737 | |
dc.identifier.uri | http://10.2.3.109/handle/32116/3904 | |
dc.identifier.url | https://iopscience.iop.org/article/10.1149/10701.18761ecst | |
dc.language.iso | en_US | en_US |
dc.publisher | Institute of Physics | en_US |
dc.subject | Backpropagation | en_US |
dc.subject | Magnetic resonance imaging | en_US |
dc.subject | Back-propagation neural networks | en_US |
dc.subject | Energy-entropy | en_US |
dc.subject | Estimation methods | en_US |
dc.subject | MRI Image | en_US |
dc.subject | Network-based | en_US |
dc.subject | Noise estimation | en_US |
dc.subject | Neural networks | en_US |
dc.title | Noise Estimation Using Back Propagation Neural Networks | en_US |
dc.title.journal | ECS Transactions | en_US |
dc.type | Conference paper | en_US |
dc.type.accesstype | Closed Access | en_US |