Application of new Kudryashov method to various nonlinear partial differential equations

dc.contributor.authorMalik, Sandeep
dc.contributor.authorHashemi, Mir Sajjad
dc.contributor.authorKumar, Sachin
dc.contributor.authorRezazadeh, Hadi
dc.contributor.authorMahmoud, W.
dc.contributor.authorOsman, M.S.
dc.date.accessioned2024-01-21T10:35:45Z
dc.date.accessioned2024-08-13T11:17:04Z
dc.date.available2024-01-21T10:35:45Z
dc.date.available2024-08-13T11:17:04Z
dc.date.issued2022-11-13T00:00:00
dc.description.abstractThe purpose of this work is to seek various innovative exact solutions using the new Kudryashov approach to the nonlinear partial differential equations (NLPDEs). This technique obtains novel exact solutions of soliton types. Moreover, several 3D and 2D plots of the higher dimensional Klein-Gordon, Kadomtsev-Petviashvili, and Boussinesq equations are demonstrated by considering the relevant values of the aforementioned parameters to exhibit the nonlinear wave structures more adequately. The new Kudryashov technique is an effective, and simple technique that provides new generalized solitonic wave profiles. It is anticipated that these novel solutions will enable a thorough understanding of the development and dynamic nature of such models. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.en_US
dc.identifier.doi10.1007/s11082-022-04261-y
dc.identifier.issn3068919
dc.identifier.urihttp://10.2.3.109/handle/32116/3427
dc.identifier.urlhttps://link.springer.com/10.1007/s11082-022-04261-y
dc.language.isoen_USen_US
dc.publisherSpringeren_US
dc.subjectBoussinesq equationen_US
dc.subjectExact solutionsen_US
dc.subjectKadomtsev�Petviashvili equationen_US
dc.subjectKlein�Gordon equationen_US
dc.subjectNew Kudryashov methoden_US
dc.titleApplication of new Kudryashov method to various nonlinear partial differential equationsen_US
dc.title.journalOptical and Quantum Electronicsen_US
dc.typeArticleen_US
dc.type.accesstypeClosed Accessen_US

Files