Sorptive removal of arsenite [As(III)] and arsenate [As(V)] by fuller's earth immobilized nanoscale zero-valent iron nanoparticles (F-nZVI): Effect of Fe 0 loading on adsorption activity
Loading...
Files
Date
2016
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Ltd
Abstract
Fuller's earth immobilized nanoscale zerovalent iron (F-nZVI 1-8) were synthesized by borohydride reduction method. The iron loading of fuller's earth immobilized nZVI was varied from 5 to 50% (w/w) in these F-nZVI 1-8. The F-nZVI 1-8 were characterized by FE-SEM-EDX, FTIR, BET, XRD and TGA. The FE-SEM analysis showed an increase in agglomeration of nZVI on the immobilized material with increase in the loading of Fe 0 . F-nZVI 1-8 were studied for adsorptive removal of As(III) and As(V) from aqueous solution, with an emphasis on the effect of Fe 0 loading of adsorbent on arsenic remediation. Iron loading has a significant role in adsorption of As(III) and As(V) on F-nZVI, with increase in adsorption with optimum iron loading of 20% (w/w) on fuller's earth (F-nZVI-4). However, increase in loading above 20%, resulted in no significant increase in As(III) and As(V) adsorption. The adsorption results fitted well with Langmuir and Freundlich isotherm models and the maximum adsorption capacity of F-nZVI-4 for As(III) and As(V) were observed to be 50.08 and 91.42 mg/g, respectively. The adsorption isotherm and kinetic studies indicate a rapid removal of As(III) and As(V) from the aqueous solution in the presence of F-nZVI 1-8, with an substantially high rate of removal for arsenic with F-nZVI-4.
Description
Keywords
Arsenic adsorption, Fuller's earth, Iron loading, Kinetics, nZVI
Citation
Yadav R., Sharma A.K., Babu J.N.(2016) Sorptive removal of arsenite [As(III)] and arsenate [As(V)] by fuller's earth immobilized nanoscale zero-valent iron nanoparticles (F-nZVI): Effect of Fe 0 loading on adsorption activity