Yadav, RadheshyamRamakrishna, Wusirika2024-01-162024-08-132024-01-162024-08-132023-09-072071105010.3390/su151813421https://doi.org/10.3390/su151813421https://kr.cup.edu.in/handle/32116/2946The climate crisis and years of unsustainable agricultural practices have reduced soil fertility and crop yield. In addition, agricultural lands contribute more than 10% of greenhouse gases (GHGs). These concerns can be addressed by using biochar for carbon neutralization, environmental restoration, and agricultural management. Biochar has a role in nitrous oxide and methane gas emission mitigation from agricultural soil. New methods are needed to link belowground processes to functioning in multi-species and multi-cultivar agroecosystems. The intricate relationship between biochar and the composition of soil microbial communities, along with its impacts on functions within the rhizosphere, constitutes a highly perplexing and elusive subject within microbial genomics. The present review discusses how biochar can mitigate climate change, enhance carbon sequestration, and support crop productivity. Biochar could be a potential solution to mitigate soil microplastics and heavy metal contamination. Applying a biochar-based microbiome reduces polycyclic aromatic hydrocarbons (PAHs) in soil. The current knowledge and perspectives on biochar�plant�microbial interactions for sustainable agriculture and ameliorating the adverse effects of climate change are highlighted. In this review, a holistic approach was used to emphasize the utility of biochar for multiple applications with positive and negative effects and its role in promoting a functional circular economy. � 2023 by the authors.en-USagricultureclimate changerhizospheric bacteriasoil healthBiochar as an Environment-Friendly Alternative for Multiple ApplicationsReviewSustainability (Switzerland)