Aggarwal, RanjanaSwati, S.Kumar, VinodSingh, RandhirKajal, AnuSaini, Deepika2024-01-212024-08-142024-01-212024-08-142022-01-22272439110.1002/ddr.21912https://kr.cup.edu.in/handle/32116/4307A series of structurally diverse N-[1-(6?-chloropyridazin-3?-yl)-3-(4?-substitutedphenyl)-1H-pyrazole-5-yl]alkanamides 5(a�r) has been designed and synthesized via Aliquat 336 catalyzed amidation of 5-amino-3-aryl-1-(6?-chloropyridazin-3?-yl)pyrazoles 3(a�c). The target compounds were designed on basis of the results obtained from the study of Lipinski's rule of five and binding interactions with target protein 3LN1. Eventually, compounds 5(a�r) were screened for their in vitro anti-inflammatory action by using inhibition of albumin denaturation and membrane stabilization assay. It has been found that all the synthesized compounds obeyed Lipinski's rule of five (nviolations�=�0�1) and showed weak to strong binding interactions with dock score range ?8.0 to ?9.9�kcal/mol. All alkanamides exhibited moderate to excellent activity as compared to the standard drug, Aspirin. Interestingly, the results indicated that the compound 5a may act as a promising medicinal lead as an anti-inflammatory agent for in vivo and clinical testing in future. � 2022 Wiley Periodicals LLC.en-USalbumin denaturation and membrane stabilization assayamideanti-inflammatorymolecular dockingpyridazineDesign, synthesis, and biological evaluation of N-[1-(6?-chloropyridazin-3?-yl)-3-(4?-substitutedphenyl)-1H-pyrazole-5-yl]alkanamides as anti-inflammatory agentsArticlehttps://doi.org/10.1002/ddr.21912Drug Development Research