Abboubakar, HamadjamKumar, PushpendraErturk, Vedat SuatKumar, Anoop2024-01-212024-08-132024-01-212024-08-132021-02-041793962310.1142/S1793962321500379http://10.2.3.109/handle/32116/3336In this work, we use a Predictor-Corrector method to implement and derive an iterative solution of an existing Tuberculosis (TB) model with two fractional derivatives, namely, Caputo-Fabrizio fractional derivative and the new generalized Caputo fractional derivative. We begin by recalling some existing results such as the basic reproduction number R0 and the equilibrium points of the model. Then, we study the global asymptotic stability of disease-free equilibrium of the fractional models. We also prove, for each fractional model, the existence and uniqueness of solutions. An iterative solution of the two models is computed using the Predictor-Corrector method. Using realistic parameter values, we perform numerical simulations for different values of the fractional order. Simulation results permit to conclude that the new generalized Caputo fractional derivative provides a more realistic analysis than the Caputo-Fabrizio fractional derivative and the classical integer-order TB model. � 2021 World Scientific Publishing Company.en-USasymptotic stabilityCaputo-Fabrizio (CF) fractional derivativegeneralized Caputo derivativePredictor-Corrector Method (PCM)TB modelA mathematical study of a tuberculosis model with fractional derivativesArticlehttps://www.worldscientific.com/doi/abs/10.1142/S1793962321500379International Journal of Modeling, Simulation, and Scientific Computing