Browsing by Author "Mahapatra, S.K."
Now showing 1 - 17 of 17
Results Per Page
Sort Options
Item Carbon nanotubes for rapid capturing of SARS-COV-2 virus: revealing a mechanistic aspect of binding based on computational studies(Royal Society of Chemistry, 2021-02-02T00:00:00) Patel, Shivkumar; Srivastav, Amit Kumar; Gupta, Sanjeev K.; Kumar, Umesh; Mahapatra, S.K.; Gajjar, P.N.; Banerjee, I.We investigate the binding interactions of synthesized multi-walled carbon nanotubes (MWCNTs) with SARS-CoV-2 virus. Two essential components of the SARS-CoV-2 structurei.e(spike receptor-binding domain complexed with its receptor ACE2) were used for computational studies. MWCNTs of different morphologies (zigzag, armchair and chiral) were synthesized through a thermal chemical vapour deposition process as a function of pyrolysis temperature. A direct correlation between radius to volume ratio of the synthesized MWCNTs and the binding energies for all three (zigzag, armchair and chiral) conformations were observed in our computational studies. Our result suggests that MWCNTs interact with the active sites of the main protease along with the host angiotensin-converting enzyme2 (ACE2) receptors. Furthermore, it is also observed that MWCNTs have significant binding affinities towards SARS-CoV-2. However, the highest free binding energy of ?87.09 kcal mol?1with were shown by the armchair MWCNTs with SARS-CoV-2 through the simulated molecular dynamic trajectories, which could alter the SARS-CoV-2 structure with higher accuracy. The radial distribution function also confirms the density variation as a function of distance from a reference particle of MWCNTs for the study of interparticle interactions of the MWCNT and SARS-CoV-2. Due to these interesting attributes, such MWCNTs could find potential application in personal protective equipment (PPE) and diagnostic kits. � The Royal Society of Chemistry 2021.Item A comprehensive review on defect passivation and gradient energy alignment strategies for highly efficient perovskite solar cells(IOP Publishing Ltd, 2021-10-07T00:00:00) Saykar, Nilesh G.; Arya, Anil; Mahapatra, S.K.Recent advances in photovoltaic devices demonstrate a potential candidature of the lead halide perovskite solar cells (PSCs) to fulfill the all-electric future of the world. Further improvements in efficiency and stability require minimization of non-radiative recombination arising due to the tr ap states created by the vacancies and defects. The device's performance is mostly determined by the perovskite absorber material, which has single-cation, mixed-cation, and/or mixed-halide composition-dependent optoelectronic capabilities. Herein, we present an insight on the state of the art of PSCs, including types of defects, their effects, and remedies of the same. Various design strategies administered to grow highly crystalline perovskite films with low defects at interfaces are described in detail. The inclusion of a few nm thin interlayer between perovskite and charge transport layer (CTL) is an effective way to passivate the defect at the interface. Furthermore, additive engineering is emerging as an excellent strategy to grow the defect-free perovskite by simply adding a polymer, ionic liquids, organic/inorganic salts in precursor solution without precipitating after film formation. The mitigation of charge recombination could be achieved by efficient charge extraction through proper energy alignment of CTLs and absorbers. Notably, we emphasize the interface, additive, and gradient band alignment engineering and resulting improvement in the photocurrent density, photovoltage, power conversion efficiency, and long-term stability. The present review gives complete information about PSCs, starting from the selection of the materials to PSC fabrication, charge carrier dynamics, defects, effects, and remedies. We hope that this summarised information will give a basic understanding of designing new passivation strategies for advancing PSC's present state of the art. � 2021 IOP Publishing Ltd.Item Design and development of a compact ion implanter and plasma diagnosis facility based on a 2.45 GHz microwave ion source(American Institute of Physics Inc., 2021-05-25T00:00:00) Swaroop, Ram; Kumar, Narender; Rodrigues, G.; Kanjilal, D.; Banerjee, I.; Mahapatra, S.K.A project on developing a 2.45 GHz microwave ion source based compact ion implanter and plasma diagnostic facility has been taken up by the Central University of Punjab, Bathinda. It consists of a double-wall ECR plasma cavity, a four-step ridge waveguide, an extraction system, and an experimental beam chamber. The mechanical design has been carried out in such a way that both types of experiments, plasma diagnosis and ion implantation, can be easily accommodated simultaneously and separately. To optimize microwave coupling to the ECR plasma cavity, a four-step ridge waveguide is designed. Microwave coupling simulation for the ECR plasma cavity has been performed at different power inputs using COMSOL Multiphysics. An enhanced electric field profile has been obtained at the center of the ECR plasma cavity with the help of a four-step ridge waveguide compared to the WR284 waveguide. The magnetic field distribution for two magnetic rings and the extraction system's focusing properties have been simulated using the computer simulation technique. A tunable axial magnetic field profile has been obtained with a two permanent magnetic ring arrangement. The dependency of the beam emittance and beam current on accelerating voltages up to 50 kV has been simulated with different ions. It shows that ion masses have a great impact on the beam emittance and output current. This facility has provision for in situ plasma diagnosis using a Langmuir probe and optical emission spectroscopy setups. This system will be used for ion implantation, surface patterning, and studies of basic plasma sciences. � 2021 Author(s).Item Effect of plasma power on reduction of printable graphene oxide thin films on flexible substrates(Institute of Physics Publishing, 2018) Banerjee, I.; Mahapatra, S.K.; Pal, C.; Sharma, A.K.; Ray, A.K.Room temperature hydrogen plasma treatment on solution processed 300 nm graphene oxide (GO) films on flexible indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates has been performed by varying the plasma power between 20 W and 60 W at a constant exposure time of 30 min with a view to examining the effect of plasma power on reduction of GO. X-ray powder diffraction (XRD) and Raman spectroscopic studies show that high energy hydrogen species generated in the plasma assist fast exfoliation of the oxygenated functional groups present in the GO samples. Significant decrease in the optical band gap is observed from 4.1 eV for untreated samples to 0.5 eV for 60 W plasma treated samples. The conductivity of the films treated with 60 W plasma power is estimated to be six orders of magnitude greater than untreated GO films and this enhancement of conductivity on plasma reduction has been interpreted in terms of UV-visible absorption spectra and density functional based first principle computational calculations. Plasma reduction of GO/ITO/PET structures can be used for efficiently tuning the electrical and optical properties of reduced graphene oxide (rGO) for flexible electronics applications. ? 2018 IOP Publishing Ltd.Item Enhanced capacitive behaviour of graphene nanoplatelets embedded epoxy nanocomposite(Springer, 2021-01-06T00:00:00) Raval, Bhargav; Sahare, P.D.; Mahapatra, S.K.; Banerjee, I.For the development of advanced polymer nanocomposite processability, high-quality and cost-efficiency plays a crucial role which combines mechanical robustness with functional electrochemical properties. In this study, we fabricated the epoxy/graphene nanocomposite (EGNC) with different wt% ratio of graphene nanoplatelets (GNPs). The EGNCs were fabricated through a solution mixing process and used it as an electrode to enhance electrochemical properties. The GNPs and EGNCs characterized using XRD, Raman spectroscopy, ATR FT-IR, and FE-SEM for the structural conformation and surface morphological study. The electrochemical analysis results show significant improvement in the specific capacitance in the EGNC samples as compared to the blank epoxy film. Specific capacitance 17.74 Fg?1 was recorded at 10 mVs?1 scan rate in 1.0�M KOH electrolyte solution for the 1.0 wt% EGNC film by cyclic voltammetry analysis. The Galvanostatic charge�discharge and Ragone plots also show mended results by the addition of GNPs. � 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.Item High-performance supercapacitor based on MoS2@TiO2 composite for wide range temperature application(Elsevier Ltd, 2021-06-07T00:00:00) Iqbal, Muzahir; Saykar, Nilesh G.; Arya, Anil; Banerjee, Indrani; Alegaonkar, Prashant S.; Mahapatra, S.K.Transition metal sulphide and their composites gain attention as electrode material in energy storage devices due to their superior properties like excellent conductivity, high surface area, and porosity. We report an evaluation of the electrochemical performance of MoS2@TiO2 binary composite in symmetric supercapacitor assembly at different temperatures. A facile hydrothermal technique is used to prepare MoS2@TiO2 binary composite. Structural and morphological analysis reveals that highly crystalline composite comprising MoS2 assembled in flower-like flake configuration, whereas, TiO2 in nanorods form are prepared. Among all three electrodes, MoS2@15%TiO2 demonstrates maximum specific capacitance 210 F/g at 10 mV/s with excellent cycling stability (98%, 2000 cycles) at ambient temperature. It may be concluded that the mono-phased, mesoporous structure is a key feature behind the improved performance over the other electrodes. Further, improvement in charge-discharge characteristics has been observed by a factor of 200% at 60 �C attributing to low activation energy and faster ion dynamics at elevated temperatures. The impedance spectroscopic analysis reveals a significant reduction in interfacial impedances that leads to a superior capacitance effect compounded with favourable electrolytic charge dynamics. The highest energy density is reported to be 21 Wh/kg with a power density of 1300 W/kg in symmetric configuration. Synergistic effect of the binary system along with unique surface morphology and charge storage followed by intercalation and capacitive mechanism results in enhanced performance of supercapacitor with MoS2@15%TiO2. Thus, binary MoS2@TiO2 composite seems to be an exceptional candidate for the energy storage device operating at a wide temperature range (25�60 �C). � 2021 Elsevier B.V.Item Investigation of dielectric and ferroelectric properties of pvdf/0.5ba (Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 composite(Apple Academic Press, 2023-06-02T00:00:00) Muduli, Sakti Prasanna; Parida, S.; Rout, S.K.; Mahapatra, S.K.(1-x)PVDF-(x)[0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3] composite films with x = 0.1, 0.2, 0.3, 0.4, 0.5 were synthesized and the comparative dielectric properties and ferroelectric properties were studied. 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) ceramic was synthesized by conventional solid-state reaction method. After phase confirmation of calcined powder, it was added to poly(vinylidene fluoride) (PVDF) solution with different weight percentages, and composite films were prepared by solvent casting followed by hot pressing method. � 2023 Apple Academic Press, Inc.Item Investigation of non linear dynamics of an excitable magnetron sputtering plasma(Elsevier, 2019) Sabavath, G; Shaw, P.K; Iyengar, A.N.S; Banerjee, I; Mahapatra, S.K.In this paper nonlinear dynamical behaviour of an excitable DC magnetron sputtering plasma has been investigated. Initially, plasma exhibited fixed point dynamics whereas with the increase in the discharge voltage, spikes were observed in the floating potential fluctuations. Furthermore, the increasing of discharge voltage resulted the increase in spikes. Power spectrum plot, normalized variance, recurrence plot and Hurst exponent are employed to extract the underlying feature of the floating potential fluctuations. A dip in the plot of normalized variance with variation in the control parameter has been seen, which is strongly indicative of coherence resonance like behaviour in the system. Power spectrum plot and Hurst exponent estimation are confirming the presence of coherence resonance behaviour. Apart from quantitative confirmation, visual verification of coherence resonance behavior has been carried out using recurrence plot analysis. It is noticed that the noise component increases with the increase in the discharge voltage and a suitable intrinsic noise strength plays an important role in generating the coherence resonance. © 2019Item Irradiation effects of 6 mev-electrons on optical and electrical properties of TiO2/Al2o3 multilayer thin films(Bellwether Publishing, Ltd., 2020-08-28T00:00:00) Laha, P.; Mahapatra, S.K.; Banerjee, I.; Bhoraskar, V.N.We report the irradiation effects on rf reactive magnetron sputter deposited TiO2/Al2O3 hetero-structured thin films. These films are irradiated with 6 MeV electron beams by maintaining the dose rate at ?1 kGy/min at three different doses 10, 20, and 30 kGy. Optical properties of the irradiated films are studied by XRD, AFM, UV Visible spectroscopy and PL spectroscopy and electrical properties are measured by Keithley Source meter. Experimental results confirm that the optical and electrical properties of the TiO2/Al2O3 multilayer films are mostly influenced by the electron dose. Optical analysis showed that irradiation modifies the optical band gap. The film properties are mainly governed by the overall clusters� formation in the oxide surface and defects due to electron irradiation. High electron doses cause the recombination of defects which reduces the film resistivity and increases the current. Optical and electrical measurement results show a reasonable qualitative agreement with each other. � 2020 Informa UK Limited, trading as Taylor & Francis Group.Item Natural Basil as Photosensitizer with ZnO Thin Films for Solar Cell Applications(Taylor and Francis Ltd., 2020-06-04T00:00:00) Shiyani, Tulshi; Mahapatra, S.K.; Banerjee, IndraniThe hybrid solar cell has been fabricated using natural dye extracted from basil or ocimum leaves and ZnO thin film. The extracted natural dye was deposited on ZnO thin films and dried at room temperature. The semiconductor layer of ZnO was fabricated on FTO-coated glass substrate using magnetron sputtering with a thickness of 500 nm. A photocathode was prepared from the Au�Pd mixture using sputtering for a top electrode. ZnO has been confirmed using X-ray diffraction and UV�visible absorption spectroscopy measurements. The photovoltaic characteristics of the prepared DSSCs were studied by measuring the I�V characteristics under the illumination of halogen light. Photocurrent and photovoltage both are increased in the cell. The value of short-circuit current (I sc), open-circuit voltage (V oc), and photon energy conversion efficiency (?) were calculated for a dye-sensitized solar cell (DSSC). DSSCs provide the promising light to electrical energy conversion efficiency due to their low-cost fabrication, environmentally friendly elements, and low maintenance. DSSC offers transparent solar cell modules with the capabilities of the use of hybrid composition such as organic and inorganic materials. The basil/ZnO-based hybrid devices can also be useful for photoelectrochemical cell and water splitting applications. � 2022 IETE.Item Nucleation and Growth of Iron (II) Oxide Nanoparticles in Thermal Arc Plasma and Their Interaction Study with SARS-CoV-2: A Computational Approach(Institute of Electrical and Electronics Engineers Inc., 2021-07-01T00:00:00) Mitra, Rahul; Patel, Shivkumar; Ghorui, S.; Mahapatra, S.K.; Banerjee, I.A computational model for nucleation and growth of iron (II) oxide nanoparticle (IONP) in thermal plasma has been developed. A nondimensional form of the aerosol general dynamic equations (GDEs) along with a discrete volume sectional model assumption is used to numerically solve the coupled system of GDEs. The variation in supersaturation ratio and the mean particle diameter of IONPs with respect to temperature across the plasma reactor has been presented. The scatter plot showing the distribution of particle number density of certain size across the reactor chamber is shown. In silico molecular docking study was performed to reveal the putative interaction of the IONPs with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus. The results revealed significant binding affinity of IONPs with 6LZG (spike receptor-binding domain complexed with its receptor ACE2) and 5RH4 (main protease) of SARS-COV-2 by forming hydrogen and hydrophobic bonds with nearby amino acid residues. The interactions of IONPs are associated with the conformational changes in the protein which could be used to treat and control SARS-CoV-2 infection. � 1973-2012 IEEE.Item One-step hydrothermal synthesis of MoS2 nano-flowers CoS2 square composites electrode materials for supercapacitor application(Elsevier Ltd, 2022-07-27T00:00:00) Iqbal, Muzahir; Saykar, Nilesh G.; Kumar Mahanta, Alok; Mahapatra, S.K.Developing efficient materials for generating and storing renewable energy is now a pressing test for future energy demand. The advent of (2D) two-dimensional materials has attracted much research interest as electrode materials for supercapacitors due to their intriguing mechanical and electrochemical properties. This report used a facile one-step hydrothermal process to synthesize MoS2@CoS2 Composite as electrode materials for supercapacitors with good energy storage performance and explore energy generation and storage applications. The structure and morphology were investigated by X-ray diffraction pattern, field emission scanning electron microscope consisting of square-shaped CoS2 and flower-like MoS2, and characterization; meanwhile, their electrochemical properties were evaluated by CV, GCD, and EIS measurements. The electrochemical performance of symmetric MoS2@CoS2 binary Composite was examined in 1 M H2SO4 in a two-electrode assembly. The as-prepared MoS2@CoS2 electrode exhibited a specific capacitance of 199F/g at a current density of 2A/g, while its counterpart MoS2 electrode exhibited only 127F/g at 2 A/g current density. The MoS2@CoS2 composite attains specific energy and power densities of 27.74 WhKg?1 and 494.46 Wkg?1, respectively, due to the unique morphology of the MoS2-flowery shape and CoS2 square. CoS2 squares effectively prevent the agglomeration and restacking of MoS2 sheets, facilitating smother ion dynamics. Technological demonstration of MoS2@CoS2 cell is presented by illuminating commercially available light-emitting diode for more than 3 min. � 2022Item Paschen curve approach to investigate electron density and deposition rate of Cu in magnetron sputtering system(Taylor and Francis Inc., 2016) Gopikishan, S.; Banerjee, I.; Bogle, K.A.; Das, A.K.; Pathak, A.P.; Mahapatra, S.K.In this work, Paschen curve for argon gas was obtained during copper deposition using a DC magnetron sputtering system. Five process parameters of Paschen curve were used to obtain the electron density and deposition rate of the deposited nanostructured thin films. Plasma parameter such as electron density was correlated with the deposition rate. It is observed that a minimum deposition rate was obtained for the plasma process parameter corresponding to the Paschen minimum. This investigation helps to understand and optimize the quality of nanostructured thin films depending on the process parameters. ? 2016 Informa UK Limited, trading as Taylor & Francis Group.Item Photo-electrochemical Property of Microwave Synthesized Muga Silk Nanoparticles/ZnO/ITO/PET Structure(Taylor and Francis Ltd., 2020-12-10T00:00:00) Asapur, Prithvi C.; Shiyani, Tulshi; Mahapatra, S.K.; Bogle, Kashinath A.; Banerjee, IndraniMuga silk nanoparticles (MSNP) in the size range of 28�142 nm were synthesized via microwave-assisted radiolysis method. Interestingly, these nanoparticles acquire cuboidal shape and exhibit photoresponsive property, under white light illumination of power 56 mW/cm2 in a photo-electrochemical cell, when fabricated in MSNP/ZnO/ITO/PET flexible device structure. The device was found to be active under visible light illumination and gives photoresponsivity of 0.119 �A/W with the rise/decay time of 0.9/0.6 s, respectively. Such photoresponse of MSNP could serve as an optoelectric biomolecule, which would find its application for next-generation wearable and implantable optoelectronic devices. � 2022 IETE.Item Plasmonic Solar Cells(wiley, 2021-08-06T00:00:00) Shiyani, T.; Mahapatra, S.K.; Banerjee, I.Photovoltaic (PV) cell is a fundamental solar energy conversion device that converts light energy into electric energy. The light absorption and charge recombination are main limiting factors on the efficiency of PV cell or solar cell. A limited efficiency of PV devices makes them less effective in market for clean energy production. Various tactics and methods are demonstrated to enhance the solar cell performance. Metallic nanoparticles have been utilized to fabricate solar cells because of its novel properties such as large surface to volume ratio and surface plasmon resonance (SPR). Plasmonic nanostructures can influence the absorption of light through scattering of surrounding molecules or particles. The plasmonic nanostructures can scatter or concentrate light at subwavelength scale for increasing absorption in active layer and hence enhancing the efficiency of PV devices. Therefore, the plasmonic nanostructures are promising candidates to develop high efficiency solar cells. We discuss about the fundamental mechanisms, ability to scale up the plasmonic with tailored optical properties, solar cell design, and recent advancements in plasmonic solar cells to generate clean energy and solar fuels. � 2021 Scrivener Publishing LLC.Item Study of Plasma Parameters and Deposition Rate of Titanium Thin Film in a DC Magnetron Sputtering Method(Pleiades journals, 2022-07-25T00:00:00) Sabavath, G.K.; Swaroop, R.; Singh, J.; Panda, A.B.; Haldar, S.; Rao, N.; Mahapatra, S.K.Abstract: The plasma parameters like electron temperature (Te) and electron density (ne) on the deposition rate in turn thickness of titanium thin film at different axial and radial positions were studied quantitatively in a DC magnetron sputtering unit. The electron flux (EF) and the electron energy distribution function (EEDF) methods were used to calculate Te and ne using the data collected from multi Langmuir probe setup. The electron density distribution was obtained through the particle-in-cell�Monte Carlo collisions (PI-C?MCC) simulation method and from IV graph using a Langmuir probe. It was observed that both Te and ne decreased with the increase in axial and radial distances from the cathode centre. The deposition rate of titanium thin films was found to follow the same pattern as Te and ne. The influence of the magnetic field configuration and change of the plasma parameters on the deposition rate were analyzed in the light of simulated and experimental results obtained. � 2022, Pleiades Publishing, Ltd.Item Synthesis of exfoliated multilayer graphene and its putative interactions with SARS-CoV-2 virus investigated through computational studies(Taylor and Francis Ltd., 2020-09-11T00:00:00) Raval, Bhargav; Srivastav, Amit Kumar; Gupta, Sanjeev K.; Kumar, Umesh; Mahapatra, S.K.; Gajjar, P.N.; Banerjee, I.Our work investigates the interaction of synthesized graphene with the SARS-CoV-2 virus using molecular docking and molecular dynamics (MD) simulation method. The layer dependent inhibitory effect of graphene nanosheets on spike receptor-binding domain of 6LZG, complexed with host receptor i.e. angiotensin-converting enzyme 2 (ACE2) of SARS-CoV-2 was investigated through computational study. Graphene sample was synthesized using mechanical exfoliation with shear stress and its mechanism of inhibition towards the SARS-CoV-2 virus was explored by molecular docking and molecular dynamics (MD) simulation method. The thermodynamics study for the free binding energy of graphene towards the SARS-CoV-2 virus was analyzed. The binding energy of graphene towards the virus increased with an increasing number of layers. It shows the highest affinity of ?17.5 Kcal/mol in molecular docking while ?Gbinding is in the order of ?28.01 � 0.04 5 Kcal/mol for the seven-layers structure. The increase in carbon layers is associated with an increasing number of edge sp3 �type carbon, providing greater curvature, further increase the surface reactivity responsible for high binding efficiency. The MD simulation data reveals the high inhibition efficiency of the synthesized graphene towards SARS-CoV-2 virus which would help to design future in-vitro studies. The graphene system could find potential applications in personal protective equipment and diagnostic kits. Communicated by Ramaswamy H. Sarma. � 2020 Informa UK Limited, trading as Taylor & Francis Group.