Browsing by Author "Ramos, Silvio Junio"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Mercury in multimedia system of Itacai�nas Basin, Brazilian Amazon: An integrated approach to understand its distribution, origin, and ecological risk(Academic Press Inc., 2023-01-23T00:00:00) Sahoo, Prafulla Kumar; Dall'Agnol, Roberto; Sim�es Rolo de Deus, Simonny do C.; Salom�o, Gabriel Negreiros; Felix Guimar�es, Jos� Tasso; Angelica, R�mulo Sim�es; Ramos, Silvio Junio; Furtado da Costa, Marlene; Oswaldo de Siqueira, JoseThis study presents the first integrated study on total Hg (THg) level in surface soil (SS), bottom soil (BS), stream sediments (SD), lake sediments (LS), stream water (SW), and lake water (LW) of Itacai�nas River Watershed (IRW), Brazil to investigate the source and distribution of Hg in different environmental media considering contrasts of geological domains and sub-basins and its potential ecological and human risk. Hg content in most of the soils and sediments were above the upper crustal average values (56 ?g/kg), however, when compared to the legal limits set by the Resolution CONAMA (Conselho Nacional de Meio Ambiente: soil 500 ?g/kg; sediment 486 ?g/kg), only 1 soil sample from Parauapebas sub-basin and 4 sediment samples from Viol�o Lake exceeded the limit. None of the SW and LW samples (<0.2 ?g/L; CONAMA limit for Class II freshwater) are markedly contaminated by Hg. The SS and BS show similar contents and spatial distribution of Hg with higher contents being registered mostly in the Itacai�nas and Parauapebas sub-basins, which are closely correlated with SD. This suggests that Hg levels are largely of geogenic origin and anthropogenic effect is highly limited. Principal Component Analysis (PCA) results show that Hg is strongly associated with total organic carbon (TOC), loss on ignition (LOI), and SO3, indicating organic matter as the main factor controlling the distribution of Hg and this is the major cause of accentuated Hg enrichment in lake sediments. The ecological risk index revealed a low pollution risk for most of the solid samples, except 11% LS and <1.5% SS and SD samples, which registered moderate risk. Health risk assessment indicated no adverse non-carcinogenic health effect on either adults and children in terms of Hg contamination. This information will be useful for Hg risk assessment in the Caraj�s region and future environmental research in this direction in the Amazonia. � 2023 Elsevier Inc.Item Soil-sediment linkage and trace element contamination in forested/deforested areas of the Itacai�nas River Watershed, Brazil: To what extent land-use change plays a role?(Elsevier B.V., 2022-03-08T00:00:00) Dall'Agnol, Roberto; Sahoo, Prafulla Kumar; Salom�o, Gabriel Negreiros; de Ara�jo, Alessandra Danieli Miranda; da Silva, Marcio Sousa; Powell, Mike A.; Junior, Jair Ferreira; Ramos, Silvio Junio; Martins, Gabriel Caixeta; da Costa, Marlene Furtado; Guilherme, Luiz Roberto Guimar�esTrace elements (TE) contamination in forested areas of the Itacai�nas River Watershed (IRW), Brazilian Amazon, arouses growing interest owing to the rapid deforestation and mining activities. In this study, soils (surface, SS; bottom, BS) and stream sediments (SD) from forested/deforested areas of IRW were analyzed with the aim of (1) evaluating the major sources of TE (mainly As, Ba, Cd, Cu, Co, Cr, Hg, Mo, Mn, Ni, Pb, V, and Zn), and (2) examining the soil-sediment TE link related to land-use change and/or geologic factors. Compositional data analysis (CoDA) was used to eliminate data closure issues and the centred log-ratio (clr) transformation yielded better results in Principal Component Analysis (PCA). The TE distribution pattern was significantly different (p < 0.05) between forested and deforested areas, but in both areas the TE distribution pattern is significantly correlated between SS, BS, and SD, indicating a strong lithogenic control. PCA (clr-transformed) identified the major geochemical bedrock signature as Fe-Ti-V-Cu-Cr-Ni, which is nearly similar in soil and sediments. The more accentuated enrichment and the maximum number of anomalies of these elements were found in the Caraj�s Basin and are highly coincident with mineral deposits/local lithologies without clear indication of anthropogenic contamination from point sources. Besides geogenic factors, deforestation is also affecting TE distribution in the basin. In deforested areas, Mn was significantly enriched in the surface horizon. Furthermore, linear regression analysis shows stronger TE relationships between soils and sediments in deforested areas than in forested ones, reflecting higher erosion in the former. This could be the reason for the relatively higher enrichment of TE (e.g., Fe, Mn, Cu, Cr, Ni) in deforested sediments. The TE contamination using regional background values provides more accurate results than worldwide reference values. Thus, the former should be considered for a more realistic environmental risk assessment in IRW and other forest ecosystems in the Brazilian Amazon. � 2022 Elsevier B.V.