Browsing by Author "Sharma A.K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Molecular mechanisms of action of genistein in cancer: Recent advances(Frontiers Media S.A., 2019) Tuli H.S.; Tuorkey M.J.; Thakral F.; Sak K.; Kumar M.; Sharma A.K.; Sharma U.; Jain A.; Aggarwal V.; Bishayee A.Background: Genistein is one among the several other known isoflavones that is found in different soybeans and soy products. The chemical name of genistein is 4?,5,7-trihydroxyisoflavone. Genistein has drawn attention of scientific community because of its potential beneficial effects on human grave diseases, such as cancer. Mechanistic insight of genistein reveals its potential for apoptotic induction, cell cycle arrest, as well as antiangiogenic, antimetastatic, and anti-inflammatory effects. Objective: The purpose of this review is to unravel and analyze various molecular mechanisms of genistein in diverse cancer models. Data sources: English language literature was searched using various databases, such as PubMed, ScienceDirect, EBOSCOhost, Scopus, Web of Science, and Cochrane Library. Key words used in various combinations included genistein, cancer, anticancer, molecular mechanisms prevention, treatment, in vivo, in vitro, and clinical studies. Study selection: Study selection was carried out strictly in accordance with the statement of Preferred Reporting Items for Systematic Reviews and Meta-analyses. Data extraction: Four authors independently carried out the extraction of articles. Data synthesis: One hundred one papers were found suitable for use in this review. Conclusion: This review covers various molecular interactions of genistein with various cellular targets in cancer models. It will help the scientific community understand genistein and cancer biology and will provoke them to design novel therapeutic strategies.Item Sorptive removal of arsenite [As(III)] and arsenate [As(V)] by fuller's earth immobilized nanoscale zero-valent iron nanoparticles (F-nZVI): Effect of Fe 0 loading on adsorption activity(Elsevier Ltd, 2016) Yadav R.; Sharma A.K.; Babu J.N.Fuller's earth immobilized nanoscale zerovalent iron (F-nZVI 1-8) were synthesized by borohydride reduction method. The iron loading of fuller's earth immobilized nZVI was varied from 5 to 50% (w/w) in these F-nZVI 1-8. The F-nZVI 1-8 were characterized by FE-SEM-EDX, FTIR, BET, XRD and TGA. The FE-SEM analysis showed an increase in agglomeration of nZVI on the immobilized material with increase in the loading of Fe 0 . F-nZVI 1-8 were studied for adsorptive removal of As(III) and As(V) from aqueous solution, with an emphasis on the effect of Fe 0 loading of adsorbent on arsenic remediation. Iron loading has a significant role in adsorption of As(III) and As(V) on F-nZVI, with increase in adsorption with optimum iron loading of 20% (w/w) on fuller's earth (F-nZVI-4). However, increase in loading above 20%, resulted in no significant increase in As(III) and As(V) adsorption. The adsorption results fitted well with Langmuir and Freundlich isotherm models and the maximum adsorption capacity of F-nZVI-4 for As(III) and As(V) were observed to be 50.08 and 91.42 mg/g, respectively. The adsorption isotherm and kinetic studies indicate a rapid removal of As(III) and As(V) from the aqueous solution in the presence of F-nZVI 1-8, with an substantially high rate of removal for arsenic with F-nZVI-4.