Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Information And Communicative Sciences
  3. Browse by Subject

Browsing by Subject "1 (naphthalen 1 yl) 4 phenylpiperazine"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Synthesis, biological evaluation and molecular modeling studies of phenyl-/benzhydrylpiperazine derivatives as potential MAO inhibitors
    (Academic Press Inc., 2018) Kumar, Bhupinder; Sheetal; Mantha, Anil K.; Kumar, Vinod
    Monoamine oxidase inhibitors (MAOIs) are potential drug candidates for the treatment of various neurological disorders like Parkinson's disease, Alzheimer's disease and depression. In the present study, two series of 4-substituted phenylpiperazine and 1-benzhydrylpiperazine (1?21) derivatives were synthesized and screened for their MAO-A and MAO-B inhibitory activity using Amplex Red assay. Most of the synthesized compounds were found selective for MAO-B isoform except compounds 3, 7, 8, 9 and 13 (MAO-A selective) while compound 11 was non-selective. In the current series, compound 12 showed most potent MAO-B inhibitor activity with IC50 value of 80 nM and compound 7 was found to be most potent MAO-A inhibitor with IC50 value of 120 nM and both the compounds were found reversible inhibitors. Compound 8 was found most selective MAO-A inhibitor while compound 20 was found most selective inhibitor for MAO-B isoform. In the cytotoxicity evaluation, all the compounds were found non-toxic to SH-SY5Y and IMR-32 cells at 25 ?M concentration. In the ROS studies, compound 8 (MAO-A inhibitor) reduced the ROS level by 51.2% while compound 13 reduced the ROS level by 61.81%. In the molecular dynamic simulation studies for 30 ns, compound 12 was found quite stable in the active cavity of MAO-B. Thus, it can be concluded that phenyl- and 1-benzhydrylpiperazine derivatives are promising MAO inhibitors and can act as a lead to design potent, and selective MAO inhibitors for the treatment of various neurological disorders. ? 2018 Elsevier Inc.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify