Biochemistry And Microbial Sciences - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/27

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Role of immune system in tumor progression and carcinogenesis
    (Wiley-Liss Inc., 2018) Upadhyay, S.; Sharma, N.; Gupta, K.B.; Dhiman, M.
    Tumor micro-environment has potential to customize the behavior of the immune cell according to their need. In immune-eliminating phase, immune cells eliminate transformed cells but after tumor establishment innate and adaptive immune cells synergistically provide shelter as well as fulfill their requirement that helps in progression. In between eliminating and establishment phase, equilibrium and escaping phase regulate the immune cells response. During immune-escaping, (1) the antigenic response generated is either inadequate, or focused entirely on tolerance, and (2) immune response generated is specific and effective, but the tumor skips immune recognition. In this review, we are discussing the critical role of immune cells and their cytokines before and after the establishment of tumor which might play a critical role during immunotherapy. ? 2018 Wiley Periodicals, Inc.
  • Thumbnail Image
    Item
    Geminin a multi task protein involved in cancer pathophysiology and developmental process: A review
    (Elsevier B.V., 2016) Kushwaha, Prem Prakash; Rapalli, Krishna Chaitanya; Kumar, Shashank
    DNA replicates in a timely manner with each cell division. Multiple proteins and factors are involved in the initiation of DNA replication including a dynamic interaction between Cdc10-dependent transcript (Cdt1) and Geminin (GMNN). A conformational change between GMNN-Cdt1 heterotrimer and heterohexamer complex is responsible for licensing or inhibition of the DNA replication. This molecular switch ensures a faithful DNA replication during each S phase of cell cycle. GMNN inhibits Cdt1-mediated minichromosome maintenance helicases (MCM) loading onto the chromatin-bound origin recognition complex (ORC) which results in the inhibition of pre-replication complex assembly. GMNN modulates DNA replication by direct binding to Cdt1, and thereby alters its stability and activity. GMNN is involved in various stages of development such as pre-implantation, germ layer formation, cell commitment and specification, maintenance of genome integrity at mid blastula transition, epithelial to mesenchymal transition during gastrulation, neural development, organogenesis and axis patterning. GMNN interacts with different proteins resulting in enhanced hematopoietic stem cell activity thereby activating the development-associated genes' transcription. GMNN expression is also associated with cancer pathophysiology and development. In this review we discussed the structure and function of GMNN in detail. Inhibitors of GMNN and their role in DNA replication, repair, cell cycle and apoptosis are reviewed. Further, we also discussed the role of GMNN in virus infected host cells. ? 2016 Elsevier B.V. and Soci?t? Fran?aise de Biochimie et Biologie Mol?culaire (SFBBM)
  • Thumbnail Image
    Item
    Novel potent inhibitors of Plasmodium vivax dihydrofolate reductase: An in silico antimalarial drug discovery
    (Association of Pharmaceutical Teachers of India, 2018) Pushpendra, Singh; Kushwaha, Prem Prakash; Shashank, Kumar
    Objectives: In the present study, we targeted the dihydrofolate reductase enzyme that catalyzes the reduction of dihydrofolate to tetrahydrofolate which is required for the purines and pyrimidine synthesis. Malaria is one of the severe diseases throughout the world caused by blood-borne parasite Plasmodium vivax. Materials and Methods: Eighty-five parthenin analogs were docked against P. vivax and Homo sapiens dihydrofolate reductase proteins (PDB 2BL9 and 1KMS respectively) by using Maestro 9.6 program to evaluate the binding affinities of ligands with the protein. Results and Discussion: Docking analysis revealed some best hit ligands against P. vivax such as CID3467446 and CID56671343 but not inhibited the mammalian dihydrofolate reductase. The Dock score of parthenin analogs ranged from -7.31 to -9.3 while for standard dihydrofolate reductase inhibitors it was -4.78 to -8.04. Structural analysis of docked complexes of selected parthenin like compounds with P. vivax and mammalian dihydrofolate reductase revealed the involvement of Arg 115, Leu 136, Lys 138, Gly 175, Ser 117, Gln 177 and Ile 7, Ala 9, Thr 56, Ile 60, Pro 61 amino acid residues respectively in strong interactions. Absorption, distribution, metabolism, and excretion properties of best-docked compounds were predicted using QikProp application of Maestro 9.6. The results indicated that all the best-docked lead compounds followed Lipinski?s rule of five. Conclusion: Based on the results of the present study it has been concluded that parthenin like compounds may serve as potent dihydrofolate reductase inhibition based anti-malarial drug lead. ? 2018, Association of Pharmaceutical Teachers of India. All rights reserved.
  • Thumbnail Image
    Item
    Characterization of WY 14,643 and its complex with Aldose reductase
    (Nature Publishing Group, 2016) Sawaya, M.R.; Verma, M.; Balendiran, V.; Rath, N.P.; Cascio, D.; Balendiran, G.K.
    The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR? NADP+) and reduced (hAR? NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR? NADP+ ? WY 14,643) and reduced (hAR? NADPH? WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR? NADP+ ? WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such as WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR. ? The Author(s) 2016.