Administration - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/2
Browse
Item Chemical Characterization and Phytotoxicity of Foliar Volatiles and Essential Oil of Callistemon viminalis(Har Krishan Bhalla and Sons, 2017) Bali, Aditi Shreeya; Batish, Daizy R.; Singh, Harminder Pal; Kaur, Shalinder; Kohli, R.K.We investigated the chemical composition and phytotoxicity of foliar volatiles (directly released from the macerated leaves) and essential oil extracted from the leaves of Callistemon viminalis against four weed species. Essential oil (EO) and foliar volatiles caused reduction in germination, seedling growth and dry matter accumulation in Bidens pilosa, Cassia occidentalis, Echinochloa crus-galli and Phalaris minor. Bidens pilosa was found to be the most sensitive towards foliar volatiles and EO, whereas C. occidentalis was the least sensitive. The chemical analyses of foliar volatiles and EO revealed the presence of 1,8-cineole and ?-pinene as the main monoterpenes. The study concludes that volatile components of C. viminalis possess phytotoxicity against weeds and thus may hold promise for the management of weeds under sustainable agriculture. ? 2017, Har Krishan Bhalla & Sons.Item Phytoremediation of lead by a wild, non-edible Pb accumulator Coronopus didymus (L.) Brassicaceae(Taylor and Francis Inc., 2018) Sidhu, Gagan Preet Singh; Bali, Aditi Shreeya; Singh, Harminder Pal; Batish, Daizy R.; Kohli, R.K.Coronopus didymus was examined in terms of its ability to remediate Pb-contaminated soils. Pot experiments were conducted for 4 and 6?weeks to compare the growth, biomass, photosynthetic efficiency, lead (Pb) uptake, and accumulation by C. didymus plants. The plants grew well having no visible toxic symptoms and 100% survivability, exposed to different Pb-spiked soils 100, 350, 1500, and 2500?mg kg?1, supplied as lead nitrate. After 4?weeks, root and shoot concentrations reached 1652 and 502?mg Pb kg?1 DW, while after 6?weeks they increased up to 3091 and 527?mg Pb kg?1 DW, respectively, at highest Pb concentration. As compared to the 4?week experiments, the plant growth and biomass yield were higher after 6?weeks of Pb exposure. However, the chlorophyll content of leaves decreased but only a slight decline in photosynthetic efficiency was observed on exposure to Pb at both 4 and 6?weeks. The Pb accumulation was higher in roots than in the shoots. The bioconcentration factor of Pb was > 1 in all the plant samples, but the translocation factor was < 1. This suggested C. didymus as a good candidate for phytoremediation of Pb-contaminated soils and can be used for future remediation purposes. ? 2018 Taylor & Francis Group, LLC.Item Phytotoxicity and weed management potential of leaf extracts of Callistemon viminalis against the weeds of rice(Springer, 2017) Bali, Aditi Shreeya; Batish, Daizy R.; Singh, Harminder Pal; Kaur, Shalinder; Kohli, R.K.We explored the phytotoxicity of Callistemon viminalis leaf extracts (LE; 0.5, 1, 2 and 4%) towards germination and early growth of rice (Oryza sativa L.) and its associated weeds [Echinochloa crus-galli (L.) Beauv., Cyperus rotundus L., Leptochloa chinensis (L.) Nees. and Commelina benghalensis L.], under laboratory and greenhouse conditions. In a laboratory assay, leaf extracts (4%) inhibited germination (40–52%), root length (36–85%), shoot length (37–64%), dry weight (27–67%) and chlorophyll content (20–42%) in all the weeds. Under greenhouse conditions, 2% leaf extracts (LE) + Butachlor (well-known herbicide; H; 50% E.C.; 2:1, v/v) severely affected the emergence and biomass of all the weeds. However, there was no effect on the growth and yield attributes of rice. Moreover, upon 2% LE + H treatment, the plant height and number of grains per plant increased significantly and the effect was comparable to the recommended dose of Butachlor. The results suggested the presence of water-soluble allelochemicals (mainly phenolics) in the leaf extracts that could be responsible for the observed inhibitory effect. Based on the study, it could be concluded that C. viminalis leaf extracts hold good potential for possible weed management, and further research could be done to develop it as an alternative to synthetic herbicides in sustainable agriculture under field conditions.