Administration - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/2

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Chemical characterization, phytotoxic, and cytotoxic activities of essential oil of Mentha longifolia
    (Springer, 2020) Singh, N; Singh, H.P; Batish, D.R; Kohli, R.K; Yadav, S.S.
    The present study assessed the phytotoxic and cytotoxic potential of the essential oil (EO) extracted from aboveground parts of Mentha longifolia (L.) Huds. Gas chromatography-mass spectrometry revealed 39 compounds constituting 99.67% of the EO. The EO was rich in monoterpenoids (mostly oxygenated monoterpenes), which accounted for 89.28% of the oil. The major components in EO were monoterpene ketones such as piperitone oxide (53.83%) and piperitenone oxide (11.52%), followed by thymol (5.80%), and (E)-caryophyllene (4.88%). The phytotoxic activities of EO were estimated against Cyperus rotundus, Echinochloa crus-galli, and Oryza sativa (rice) through pre- and post-emergence assays at concentrations ranging from 10 to 250 μg/ml and 0.5–5%, respectively. In pre-emergence assay, the phytotoxic effect of EO was most pronounced on C. rotundus, thereby significantly affecting percent germination, plantlet growth, and chlorophyll content. On the contrary, the impact was comparatively lesser on rice, with ~ 40% germination in response to 250 μg/ml of EO treatment. In the post-emergence assay, the spray treatment of EO caused a loss of chlorophyll and wilting in test plants, and subsequently affected the growth of plants, even leading to death in some cases. The cytotoxic activity of (at 2.5–50 μg/ml) was studied in meristem cells in onion (Allium cepa L.) root tips. EO exposure to the onion roots induced various chromosomal aberrations such as chromosomal bridges, c-mitosis, stickiness, vagrant chromosomes, etc., and negatively affected the mitotic index. At 50 μg/ml, EO treatment triggered the complete death of roots. The study concludes that M. longifolia EO has phytotoxic activities due to the mito-depressive effect, along with other physiological effects on target plants. Therefore, EO of M. longifolia could be developed into a novel bioherbicide for sustainable management of weeds in agricultural systems. - 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
  • Item
    Appraisal of phytotoxic, cytotoxic and genotoxic potential of essential oil of a medicinal plant Vitex negundo
    (Elsevier B.V., 2020) Issa M.; Chandel S.; Pal Singh H.; Rani Batish D.; Kumar Kohli R.; Singh Yadav S.; Kumari A.
    The excessive use of synthetic herbicides in agriculture has steered the development of resistance in weeds along with the production of toxic effects on the environment. Essential oils (EOs) are emerging as an alternative to the synthetic herbicides or agrochemicals because of their effectiveness and easy degradability. A study was, therefore, planned to investigate the phytotoxic, cytotoxic and genotoxic potential of EO extracted from Vitex negundo L., a medicinally important plant. Chemical characterization using GC–MS revealed that V. negundo EO is rich in sesquiterpenes with ?-Caryophyllene (27.80 %) as the major compound. The phytotoxic effect of the EO (0.10–2.50 mg/mL) was investigated against two agricultural weeds: Avena fatua L. and Echinochloa crus-galli (L.) P. Beauv. Germination percentage and early seedling growth (coleoptile and root length) decreased significantly with an increase in EO concentration in both the test weeds. The cytotoxic potential of the oil was explored in Allium cepa L. by accessing mitotic index (MI) and chromosomal aberration percentage, whereas the effect on DNA integrity was evaluated as a percentage of head DNA (HDNA) and tail DNA (TDNA), tail moment (TM) and olive tail moment (OTM). EO treatment altered the cell cycle as evinced by a significant decrease in MI and an increase in aberration percentage at concentrations ? 0.05 and ? 0.025 mg/mL, respectively. In response to 0.10 mg/mL EO treatment, HDNA decreased by 9.37 %, whereas an increase of ?1.67, 4.70 and 1.80 fold was observed in TDNA, TM and OTM, respectively. The study concludes that V. negundo EO induced cytotoxic and genotoxic effects might be accountable for the phytotoxicity of EO against weeds, and thus holds a good potential for use under sustainable agricultural systems.
  • Thumbnail Image
    Item
    Chemical profiling, cytotoxicity and phytotoxicity of foliar volatiles of Hyptis suaveolens
    (Academic Press, 2019) Sharma, A; Singh, H.P; Batish, D.R; Kohli, R.K.
    In the present study, the essential oil (EO) of Hyptis suaveolens has been explored for the first time for its phytotoxic and cytotoxic activities. The phytotoxic activity was assessed against rice (Oryza sativa) and its major troublesome weed, Echinochloa crus-galli, under laboratory and screenhouse conditions. GC-MS analysis revealed EO to be monoterpenoid (~ 79% monoterpenes) in nature with α-phellandrene (22.8%), α-pinene (10.1%) and limonene (8.5%) as the major chemical constituents. The laboratory bioassay showed a complete growth inhibitory effect of EO (≥ 2 mg mL −1 ) towards the germination and seedling growth of E. crus-galli. However, the inhibitory effect on rice was much less (~40% inhibition). EO caused visible injury, reduction in chlorophyll content, cell viability and ultimately led to complete wilting of E. crus-galli plants. In addition, EO altered the cell division in the meristematic cells of Allium cepa as depicted by ~63% decrease in mitotic index. EO exposure induced several aberrations at chromosomal (c-mitosis, anaphase bridges, chromosomal breakage, vagrant chromosomes, and sticky chromosomes) and cytological level (cytoplasm destruction, peripheral nuclei, and bi-nucleate cells). The present study concludes that H. suaveolens EO possesses phytotoxic activity due to its mito-depressive activity, and could serve as a natural herbicide under sustainable agricultural practices. © 2018 Elsevier Inc.