Department Of Chemistry
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/33
Browse
2 results
Search Results
Item Sorptive removal of arsenite [As(III)] and arsenate [As(V)] by fuller's earth immobilized nanoscale zero-valent iron nanoparticles (F-nZVI): Effect of Fe 0 loading on adsorption activity(Elsevier Ltd, 2016) Yadav R.; Sharma A.K.; Babu J.N.Fuller's earth immobilized nanoscale zerovalent iron (F-nZVI 1-8) were synthesized by borohydride reduction method. The iron loading of fuller's earth immobilized nZVI was varied from 5 to 50% (w/w) in these F-nZVI 1-8. The F-nZVI 1-8 were characterized by FE-SEM-EDX, FTIR, BET, XRD and TGA. The FE-SEM analysis showed an increase in agglomeration of nZVI on the immobilized material with increase in the loading of Fe 0 . F-nZVI 1-8 were studied for adsorptive removal of As(III) and As(V) from aqueous solution, with an emphasis on the effect of Fe 0 loading of adsorbent on arsenic remediation. Iron loading has a significant role in adsorption of As(III) and As(V) on F-nZVI, with increase in adsorption with optimum iron loading of 20% (w/w) on fuller's earth (F-nZVI-4). However, increase in loading above 20%, resulted in no significant increase in As(III) and As(V) adsorption. The adsorption results fitted well with Langmuir and Freundlich isotherm models and the maximum adsorption capacity of F-nZVI-4 for As(III) and As(V) were observed to be 50.08 and 91.42 mg/g, respectively. The adsorption isotherm and kinetic studies indicate a rapid removal of As(III) and As(V) from the aqueous solution in the presence of F-nZVI 1-8, with an substantially high rate of removal for arsenic with F-nZVI-4.Item Genetic engineering of poplar: Current achievements and future goals(Springer Singapore, 2017) Yadav R.; Yadav N.; Goutam U.; Kumar S.; Chaudhury A.Global biomass demand for industrial applications is ever increasing especially in biofuels and pulp industries. Poplar is likely to have great biological advantages over the other forest trees which include small genome size, large number of species, rapid juvenile growth, ease of clonal propagation, easy recovery of genetic transformants, and available genome draft. Wide and sustainable farming of rapidly growing trees such as poplars may supplement to attain the requirement of renewable resources. This chapter covers the progress in both basic and applied studies in poplar genetic tailoring. Certain advices are given for future direction of the research in poplar genetic tailoring so as to achieve the needs of environmental cleansing system and the timber industries. Emerging new thoughts for designing wood improvement approaches are discussed.