Department Of Human Genetics And Molecular Medicine
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/103
Browse
2 results
Search Results
Item Let-7a induces metabolic reprogramming in breast cancer cells via targeting mitochondrial encoded ND4(BioMed Central Ltd, 2021-11-27T00:00:00) Sharma, Praveen; Sharma, Vibhuti; Ahluwalia, Tarunveer Singh; Dogra, Nilambra; Kumar, Santosh; Singh, SandeepBackground and objectives: MicroRNA (miRNA) that translocate from the nucleus to mitochondria are referred to as mitochondrial microRNA (mitomiR). Albeit mitomiRs have been shown to modulate gene expression, their functional impact within mitochondria is unknown. The main objective of this study is to investigate whether the mitochondrial genome is regulated by miR present inside the mitochondria. Methods and results: Here, we report mitomiR let-7a regulates mitochondrial transcription in breast cancer cells and reprogram the metabolism accordingly. These effects were mediated through the interaction of let-7a with mtDNA, as studied by RNA pull-down assays, altering the activity of Complex I in a cell line-specific manner. Our study, for the first time, identifies the role of mitomiR (let-7a) in regulating the mitochondrial genome by transcriptional repression and its contribution to regulating mitochondrial metabolism of breast cancer cells. Conclusion: These findings uncover a novel mechanism by which mitomiR regulates mitochondrial transcription. � 2021, The Author(s).Item miR-30c and miR-181a synergistically modulate p53?p21 pathway in diabetes induced cardiac hypertrophy(Springer New York LLC, 2016) Raut, Satish K.; Singh, Gurinder B.; Rastogi, Bhawna; Saikia, Uma Nahar; Mittal, Anupam; Dogra, Nilambra; Singh, Sandeep; Prasad, Rishikesh; Khullar, Madhup53?p21 pathway mediates cardiomyocyte hypertrophy and apoptosis and is upregulated in diabetic cardiomyopathy (DbCM). We investigated role of microRNAs in regulating p53?p21 pathway in high glucose (HG)-induced cardiomyocyte hypertrophy and apoptosis. miR-30c and miR-181a were identified to target p53. Cardiac expression of microRNAs was measured in diabetic patients, diabetic rats, and in HG-treated cardiomyocytes. Effect of microRNAs over-expression and inhibition on HG-induced cardiomyocyte hypertrophy and apoptosis was examined. Myocardial expression of p53 and p21 genes was increased and expression of miR-30c and miR-181a was significantly decreased in diabetic patients, DbCM rats, and in HG-treated cardiomyocytes. Luciferase assay confirmed p53 as target of miR-30c and miR-181a. Over-expression of miR-30c or miR-181a decreased expression of p53, p21, ANP, cardiomyocyte cell size, and apoptosis in HG-treated cardiomyocytes. Concurrent over-expression of these microRNAs resulted in greater decrease in cardiomyocyte hypertrophy and apoptosis, suggesting a synergistic effect of these microRNAs. Our results suggest that dysregulation of miR-30c and miR-181a may be involved in upregulation of p53?p21 pathway in DbCM. ? 2016, Springer Science+Business Media New York.