Department Of Human Genetics And Molecular Medicine
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/103
Browse
2 results
Search Results
Item Oxidative stress in the development of genetic generalised epilepsy: An observational study in southern Indian population(Journal of Clinical and Diagnostic Research, 2017) Prasad, D.K.V.; Satyanarayana, U.; Shaheen, U.; Surya Prabha, T.; Munshi, A.Introduction: Oxidative stress resulting from excessive generation of Reactive Oxygen Species (ROS) plays a significant role in neurodegeneration associated with seizures/epilepsy. Aim: To evaluate oxidative stress markers and antioxidant enzymes in Genetic Generalised Epilepsy (GGE) and to know the extent of oxidative stress induced by Anti-Epileptic Drugs (AEDs) with the time duration of treatment. Materials and Methods: In this case-control study, 310 GGE patients (male:female=203:107), who were on AED treatment (n=235) and 75 untreated patients (male:female=49:26) along with 310 age and sex matched healthy controls were recruited. Oxidative stress markers such as Nitric Oxide (NO), Malondialdehyde (MDA) and antioxidant enzyme activities namely Superoxide Dismutase (SOD), Glutathione Peroxidase (GPx) and Catalase (CAT) were measured spectrophotometrically. Results: Significantly higher levels of serum NO, MDA and low levels of plasma Total Antioxidant Capacity (TAC) were found in patients as compared to controls (p<0.001) whereas erythrocyte SOD, CAT and GPx activities were found to be significantly low in patients when compared to the control group (p<0.001). Statistically significant higher levels of NO, MDA and lower levels of SOD, CAT and TAC were observed in patients subgroup, who were on AEDs for more than >5 years compared to other groups (? 1 year and 1-? 5 years) (p=0.02, p=0.01, p=0.001, p=0.01 and p=0.05 respectively). Further, significant increase in the levels of NO, MDA and decreased activities of SOD, CAT were found in treated patients compared to untreated patients (p<0.05) denoting that additional oxidative stress induced by AEDs which results in seizure recurrence and drug intractability. Conclusion: Our study demonstrated that GGE patients have additional oxidative stress due to AEDs and decreased antioxidant enzyme activities causing an imbalance between oxidant and antioxidant status, which might contribute to the pathogenesis of GGE. ? 2017, Journal of Clinical and Diagnostic Research. All rights reserved.Item Association of GABRA6 1519 T>C (rs3219151) and Synapsin II (rs37733634) gene polymorphisms with the development of idiopathic generalized epilepsy(Elsevier, 2014) Prasad, D.K.V.; Shaheen, U.; Satyanarayana, U.; Prabha, T.S.; Jyothy, A.; Munshi, A.The idiopathic generalized epilepsy (IGE) is a neurological disorder which accounts for approximately 30% of all epilepsy cases. Patients identified with IGE syndromes have pharmacoresponsive epilepsies without abnormal neurological symptoms, structural brain lesions and are of unknown origin. A genetic etiology to IGEs has been proposed. Gamma amino butyric acid (GABA), a major inhibitory neurotransmitter acts by binding to transmembrane GABAA and GABAB receptors of both pre- and postsynaptic neurons. Synapsin II (SynII), a neuron specific phosphoprotein plays a major role in synaptogenesis and neurotransmitter release. The present study was carried out with an aim to evaluate the association of GABRA6 (rs3219151) T>C and Syn II (rs37733634) A>G gene polymorphisms with IGE. Molecular analysis revealed that the frequency of 'CC' genotype and 'C'allele of GABRA6 (rs3219151) T>C gene polymorphism was significantly higher in IGE patients compared to healthy controls [CC vs. TT, ?2=26; p<0.001; Odds ratio=3.6 (95% CI; 2.1-5.9); C vs T, ?2=24.7; p<0.001; Odds ratio=1.78 (95% CI; 1.4-2.2)]. The frequency of 'GG' genotype and 'G' allele of the intronic polymorphism A>G in Syn II gene was also found to be significantly associated with the disease when compared to controls [GG vs AA, ?2=64.52; p<0.001; Odds ratio=7.37 (95% CI; 4.4-12.3); G vs. A, ?2=65.78; p<0.001; Odds ratio=2.57 (95% CI; 2.0-3.2)]. The generalized multifactor dimensionality reduction method was employed to detect gene-gene interactions. The gene-gene interaction at two loci involving GABRA6 and Syn II revealed a significant association [?2=36.6, p<0.001, Odds ratio=3.17 (95% CI; 2.2-4.6)] with IGE. Therefore, the present study clearly indicates that both GABRA6 (rs3219151) T>C and Syn II (rs37733634) A>G polymorphisms are important risk factors for the development of IGE in the South Indian population from Andhra Pradesh. The gene-gene interaction studies demonstrated significant interactive effects of these two loci in the development of the disease. ? 2014 Elsevier B.V.