Department Of Human Genetics And Molecular Medicine

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/103

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Differential molecular mechanistic behavior of HDACs in cancer progression
    (Springer, 2022-08-16T00:00:00) Singh, Tashvinder; Kaur, Prabhsimran; Singh, Paramdeep; Singh, Sandeep; Munshi, Anjana
    Genetic aberration including mutation in oncogenes and tumor suppressor genes transforms normal cells into tumor cells. Epigenetic modifications work concertedly with genetic factors in controlling cancer development. Histone acetyltransferases (HATs), histone deacetylases (HDACs), DNA methyltransferases (DNMTs) and chromatin structure modifier are prospective epigenetic regulators. Specifically, HDACs are histone modifiers regulating the expression of genes implicated in cell survival, growth, apoptosis, and metabolism. The majority of HDACs are highly upregulated in cancer, whereas some have a varied function and expression in cancer progression. Distinct HDACs have a positive and negative role in controlling cancer progression. HDACs are also significantly involved in tumor cells acquiring metastatic and angiogenic potential in order to withstand the anti-tumor microenvironment. HDACs� role in modulating metabolic genes has also been associated with tumor development and survival. This review highlights and discusses the molecular mechanisms of HDACs by which they regulate cell survival, apoptosis, metastasis, invasion, stemness potential, angiogenesis, and epithelial to mesenchymal transitions (EMT) in tumor cells. HDACs are the potential target for anti-cancer drug development and various inhibitors have been developed and FDA approved for a variety of cancers. The primary HDAC inhibitors with proven anti-cancer efficacy have also been highlighted in this review. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Let-7a induces metabolic reprogramming in breast cancer cells via targeting mitochondrial encoded ND4
    (BioMed Central Ltd, 2021-11-27T00:00:00) Sharma, Praveen; Sharma, Vibhuti; Ahluwalia, Tarunveer Singh; Dogra, Nilambra; Kumar, Santosh; Singh, Sandeep
    Background and objectives: MicroRNA (miRNA) that translocate from the nucleus to mitochondria are referred to as mitochondrial microRNA (mitomiR). Albeit mitomiRs have been shown to modulate gene expression, their functional impact within mitochondria is unknown. The main objective of this study is to investigate whether the mitochondrial genome is regulated by miR present inside the mitochondria. Methods and results: Here, we report mitomiR let-7a regulates mitochondrial transcription in breast cancer cells and reprogram the metabolism accordingly. These effects were mediated through the interaction of let-7a with mtDNA, as studied by RNA pull-down assays, altering the activity of Complex I in a cell line-specific manner. Our study, for the first time, identifies the role of mitomiR (let-7a) in regulating the mitochondrial genome by transcriptional repression and its contribution to regulating mitochondrial metabolism of breast cancer cells. Conclusion: These findings uncover a novel mechanism by which mitomiR regulates mitochondrial transcription. � 2021, The Author(s).
  • Item
    Design, Synthesis and Biological Evaluation of New 5-(2-Nitrophenyl)-1-aryl-1H-pyrazoles as Topoisomerase Inhibitors
    (John Wiley and Sons Inc, 2021-07-09T00:00:00) Kaur, Manpreet; Mehta, Vikrant; Arora, Sahil; Munshi, Anjana; Singh, Sandeep; Kumar, Raj
    5-(2-Nitrophenyl)-1-aryl-1H-pyrazoles are designed as topoisomerase (Topo) inhibitors, synthesised and assessed for their anticancer properties against breast (MDA-MB-231 and MCF7), lung (A549), and colorectal (HCT116) cancer cell lines. All the compounds induced significant cytotoxicity at low micromolar concentration. The compound 5e exerted potential anticancer effects on breast cancer cell lines at a low micromolar level (IC50<2 ?M), and showed negligible toxicity towards normal cells. Compound 5 e reduced reactive oxygen species (ROS) level in breast cancer cells, altered mitochondrial membrane potential and induced the cell cycle arrest at the G2/M phase. This was accompanied by downregulation of oncogenic p-Akt and upregulation of p-PTEN along with modulation of apoptotic markers suggesting multiple mechanisms to reduce cancer cell viability. Finally, the topoisomerase inhibition assay revealed the inhibitory activity of 5 e against Topo I and Topo II. � 2021 Wiley-VCH GmbH.