Department Of Human Genetics And Molecular Medicine

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/103

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Genetic variants of metabolism and inflammatory pathways, and PCOS risk �Systematic review, meta-analysis, and in-silico analysis
    (Elsevier B.V., 2023-09-14T00:00:00) Sharma, Priya; Bhatia, Kabir; Singh Kapoor, Harmanpreet; Kaur, Balpreet; Khetarpal, Preeti
    Importance: Identification of genetic risk factors for PCOS susceptibility. Objective: To identify genetic risk variants of the genes involved in metabolic or inflammatory pathways. Data sources: Relevant literature was identified and extracted from PubMed, Central Cochrane Library, Google Scholar, and Science Direct by using a set of keywords related to pre-determined genes up to 06 May 2023. Study selection and synthesis: PRISMA guidelines were followed to design the protocol which is registered in PROSPERO (CRD42023422501). Pooled odds ratio (OR) and 95% confidence interval (95% CI) for different gene variants were calculated under different genetic models (dominant model, recessive model, additive model, and allele model) by using Review Manager software 4.2. Main outcomes: Metabolic genetic variants FTO rs9939609, IL-6 rs1800795 and CAPN10 rs3842570, rs2975760, and RAB5B rs705702 are associated with PCOS risk. Results: Forty-four relevant articles have been identified for genes involved in metabolic (n = 23) or inflammatory pathways (n = 21). There is a significant association (p < 0.05) of IL-6 rs1800795 and FTO rs9939609 with increased risk.CAPN10 rs2975760 Ins allele is suggested as a protective factor among only the non-Asian population. Also, a significant association of CAPN10 rs2975760 and RAB5B rs705702 with increased risk among the Asian population is suggested. However, no significant association could be found between CAPN10 rs3792267, rs5030952, and SUMO1P1 rs2272046, and the risk of PCOS in any of the subpopulations analysed. In silico analysis suggests the deleterious effect of IL-6 rs1800795. Conclusion: and relevance: The study suggests the role of various genetic variants for genetic predisposition to PCOS among different subpopulations. � 2023 Elsevier B.V.
  • Item
    Differential molecular mechanistic behavior of HDACs in cancer progression
    (Springer, 2022-08-16T00:00:00) Singh, Tashvinder; Kaur, Prabhsimran; Singh, Paramdeep; Singh, Sandeep; Munshi, Anjana
    Genetic aberration including mutation in oncogenes and tumor suppressor genes transforms normal cells into tumor cells. Epigenetic modifications work concertedly with genetic factors in controlling cancer development. Histone acetyltransferases (HATs), histone deacetylases (HDACs), DNA methyltransferases (DNMTs) and chromatin structure modifier are prospective epigenetic regulators. Specifically, HDACs are histone modifiers regulating the expression of genes implicated in cell survival, growth, apoptosis, and metabolism. The majority of HDACs are highly upregulated in cancer, whereas some have a varied function and expression in cancer progression. Distinct HDACs have a positive and negative role in controlling cancer progression. HDACs are also significantly involved in tumor cells acquiring metastatic and angiogenic potential in order to withstand the anti-tumor microenvironment. HDACs� role in modulating metabolic genes has also been associated with tumor development and survival. This review highlights and discusses the molecular mechanisms of HDACs by which they regulate cell survival, apoptosis, metastasis, invasion, stemness potential, angiogenesis, and epithelial to mesenchymal transitions (EMT) in tumor cells. HDACs are the potential target for anti-cancer drug development and various inhibitors have been developed and FDA approved for a variety of cancers. The primary HDAC inhibitors with proven anti-cancer efficacy have also been highlighted in this review. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Small regulatory molecules acting big in cancer: Potential role of mito-miRs in cancer
    (Bentham Science Publishers, 2019) Sharma P.; Bharat; Dogra N.; Singh S.
    MicroRNAs [miRNAs] are short, non-coding, single stranded RNA molecules regulating gene expression of their targets at the posttranscriptional level by either degrading mRNA or by inhibiting translation. Previously, miRNAs have been reported to be present inside the mitochondria and these miRNAs have been termed as mito-miRs. Origin of these mito-miRs may either be from mitochondrial genome or import from nucleus. The second class of mito-miRs makes it important to unravel the involvement of miRNAs in crosstalk between nucleus and mitochondria. Since miRNAs are involved in various physiological processes, their deregulation is often associated with disease progression, including cancer. The current review focuses on the involvement of miRNAs in different mitochondrial mediated processes. It also highlights the importance of exploring the interaction of miRNAs with mitochondrial genome, which may lead to the development of small regulatory RNA based therapeutic options.