Department Of Human Genetics And Molecular Medicine
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/103
Browse
3 results
Search Results
Item miRNA signatures in diabetic retinopathy and nephropathy: delineating underlying mechanisms(Springer Science and Business Media B.V., 2022-01-31T00:00:00) Kaur, Prabhsimran; Kotru, Sushil; Singh, Sandeep; Munshi, AnjanaA worldwide failure to achieve glycemic targets has led to complications associated with diabetes mellitus. In addition to genetic and other risk factors, epigenetic factors like DNA methylation, histone modifications, and non-coding RNAs play a significant part in the pathogenesis of complications. Among non-coding RNAs, miRNAs have been explored extensively since they control various biological processes. Their dysregulation has been implicated in various diseases including diabetic complications. Diabetic retinopathy and nephropathy are two common microvascular diabetic complications. Diabetic retinopathy affects the retina of the eye whereas nephropathy damages kidneys on account of prolonged hyperglycemia. This review aims to evaluate the role of miRNAs in diabetic retinopathy and diabetic nephropathy with an emphasis on the dysregulation of various pathways involved. In addition, the role of significant miRNAs as biomarkers for the diagnosis and prognosis of complications has also been discussed. Further, an update on the role of important miRNAs as potential therapeutic modalities has been given. � 2021, The Author(s) under exclusive licence to University of Navarra.Item Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions(Springer, 2022-01-13T00:00:00) Kaur, Prabhsimran; Kotru, Sushil; Singh, Sandeep; Munshi, AnjanaAccelerating cases of diabetes worldwide have given rise to higher incidences of diabetic complications. MiRNAs, a much-explored class of non-coding RNAs, play a significant role in the pathogenesis of diabetes mellitus by affecting insulin release, ?-cell proliferation, and dysfunction. Besides, disrupted miRNAs contribute to various complications, diabetic retinopathy, nephropathy, and neuropathy as well as severe conditions like diabetic foot. MiRNAs regulate various processes involved in diabetic complications like angiogenesis, vascularization, inflammations, and various signaling pathways like PI3K, MAPK, SMAD, and NF-KB signaling pathways. Diabetic neuropathy is the most common diabetic complication, characterized mainly by pain and numbness, especially in the legs and feet. MiRNAs implicated in diabetic neuropathy include mir-9, mir-106a, mir-146a, mir-182, miR-23a and b, miR-34a, and miR-503. The diabetic foot is the most common diabetic neuropathy, often leading to amputations. Mir-203, miR-23c, miR-145, miR-29b and c, miR-126, miR-23a and b, miR-503, and miR-34a are associated with diabetic foot. This review has been compiled to summarize miRNA involved in initiation, progression, and miRNAs affecting various signaling pathways involved in diabetic neuropathy including the diabetic foot. Besides, potential applications of miRNAs as biomarkers and therapeutic targets in this microvascular complication will also be discussed. � 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Small regulatory molecules acting big in cancer: Potential role of mito-miRs in cancer(Bentham Science Publishers, 2019) Sharma P.; Bharat; Dogra N.; Singh S.MicroRNAs [miRNAs] are short, non-coding, single stranded RNA molecules regulating gene expression of their targets at the posttranscriptional level by either degrading mRNA or by inhibiting translation. Previously, miRNAs have been reported to be present inside the mitochondria and these miRNAs have been termed as mito-miRs. Origin of these mito-miRs may either be from mitochondrial genome or import from nucleus. The second class of mito-miRs makes it important to unravel the involvement of miRNAs in crosstalk between nucleus and mitochondria. Since miRNAs are involved in various physiological processes, their deregulation is often associated with disease progression, including cancer. The current review focuses on the involvement of miRNAs in different mitochondrial mediated processes. It also highlights the importance of exploring the interaction of miRNAs with mitochondrial genome, which may lead to the development of small regulatory RNA based therapeutic options.